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Spatial Realization of Escher’s Impossible World

Kokichi Sugihara

Abstract— M. C. Escher, a Dutch artist, created a series of
lithographs presenting ‘“impossible”” objects and ‘“‘impossible”
motions. Although they are usually called “impossible”, some
of them can be realized as solid objects and physical motions in
the three-dimensional space. The basic idea for these realizations
is to use the degrees of freedom in the reconstruction of solids
from pictures. First, the set of all solids represented by a given
picture is represented by a system of linear equations and
inequalities. Next the distribution of the freedom is characterized
by a matroid extracted from this system. Then, a robust method
for reconstructing solids is constructed and applied to the spatial
realization of the “impossible’” world.

I. INTRODUCTION

There is a class of pictures called “anomalous pictures” or
“pictures of impossible objects”. These pictures generate optical
illusion; when we see them, we have impressions of three-
dimensional object structures, but at the same time we feel that
such objects are not realizable. The Penrose triangle [13] is one
of the oldest such pictures. Since the discovery of this triangle,
many pictures belonging to this class have been discovered and
studied in the field of visual psychology [9], [14].

The pictures of impossible objects have also been studied
from a mathematical point of view. One of the pioneers is
Huffman, who characterized impossible objects from a viewpoint
of computer interpretation of line drawings [10]. Clowes [2] also
proposed a similar idea in a different manner. Cowan [3], [4] and
Térouanne [20] characterized a class of impossible objects that
are topologically equivalent to a torus. Draper studied pictures
of impossible object through the gradient space [6]. Sugihara
classified pictures of impossible objects according to his algorithm
for interpretation of line drawings [15], [16].

Impossible objects have also been used as material for artistic
work by many artists. One of the most famous examples is the
endless loop of stairs drawn by Dutch artist M. C. Escher in
his work titled “Klimmen en dalen (Ascending and descending)”
[8]. Other examples include painting by Mitsumasa Anno [1] and
drawings by Sandro del Prete [7], to mention a few.

Those activities are stories about two-dimensional pictures. On
the other hand, several tricks have also been found for realization
of impossible objects as actual three-dimensional structures. The
first trick is to use curved surfaces for faces that look planar;
Mathieu Hamaekers generated the Penrose triangle by this trick
[7]. The second trick is to generate hidden gaps in depth; Shigeo
Fukuda used this trick and generated a solid model of Escher’s
“Waterfall” [7].

In this paper, we point out that some “impossible” objects can
be realized as three-dimensional solids even if those tricks are not
employed; in other words, “impossible” objects can be realized
under the conditions that faces are made by planar (non-curved)
polygons and that object parts are actually connected whenever
they look connected in the picture plane. For example, Escher’s
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endless loop of stairs can be realized as a solid model, as shown in
Fig. 1 [17], [18]. We call this trick the “non-rectangularity trick”,
because those solid objects have non-rectangular face angles that
look rectangular.

(a) (b)

(©)

Fig. 1. Three-dimensional realization of Escher’s endless loop of stairs: (a)
ordinary picture; (b) picture of an impossible object; (c) solid model realized
from the picture in (b).

The resulting solid models can generate optical illusions in the
sense that although we are looking at actual objects, we feel that
those objects can not exist. In all of those three tricks, we need
to see the objects from a unique special point of view. Hence
the illusion disappears if we move our eye positions. However,
the non-rectangularity trick is less sensitive to the eye position,
because the objects are made in such a way that faces that look
planar are actually planar, and the parts that look connected are
actually connected.

The non-rectangularity trick can also be used to generate a new
class of visual illusion called “impossible” physical motions. The
basic idea is as follows. Instead of pictures of impossible objects,
we choose pictures of ordinary objects around us, and reconstruct
solid models from these pictures using the non-rectangularity
trick. The resulting solid models are unusual in their shapes
although they look ordinary. Because of this gap between the
perceived shape and the actual shape, we can add actual physical
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motions that look like impossible.

The artist closest to the present work is M. C. Escher. Actu-
ally, he created many beautiful and interesting lithographs with
mathematical flavor. Among many others, his works contain two
groups; one is related to periodic tilings and the other is related to
pictures of impossible objects. The former group, works based on
periodic tilings, has been studied from a computational point of
view by many scientists [5]; Recently, in particular, Kaplan and
Salesin constructed a method called “Escherization” for designing
Escher-like pictures based on tilings [11], [12].

From the viewpoint of computer-aided approach to Escher, the
present paper is an attack on the other group, impossible objects
and impossible motions. Actually, we represent a method for
constructing three-dimensional solid objects and physical motions
represented in Escher’s lithographs. In this sense, what we are de-
scribing in this paper might be called “Three-Dimensionalization
of the Escher World”.

The organization of the paper is as follows. In Section II, we
review the basic method for judging the realizability of a solid
from a given picture, and in Section III, we review the robust
method for reconstructing objects from pictures. In Section 1V,
we study how the degrees of freedom for reconstructing the
solids are distributed in the picture. We show examples of the
three dimensional realization of impossible objects and impossible
motions in Section V and give conclusions in Section VI.

II. FREEDOM IN THE BACK-PROJECTION

In this section we briefly review the algebraic structure of
the freedom in the choice of the polyhedron represented by a
picture [16]. This gives the basic tool with which we construct
our algorithm for designing impossible motions.

As shown in Fig. 2, suppose that an (z,y,z) Cartesian co-
ordinate system is fixed in the three-dimensional space, and a
given polyhedral object P is projected by the central projection
with respect to the center at the origin O = (0,0,0) onto the
picture plane z = 1. Let the resulting picture be denoted by D. If
the polyhedron P is given, the associated picture D is uniquely
determined. On the other hand, if the picture D is given, the
associated polyhedron is not unique; there is large freedom in the
choice of the polyhedron whose projection coincides with D. The
algebraic structure of the degree of freedom can be formulated in
the following way.

y

Fig. 2. Solid and its central projection.

For a given polyhedron P, let V = {v1,v2,...,vm} be the set

of all the vertices of P, F = {f1, fe,..., fn} be the set of all
the faces of P, and R be the set of all pairs (v;, f;) of vertices
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v; (€ V) and faces f; (€ F) such that v; is on f;. We call the
triple I = (V, F, R) the incidence structure of P.
Let (z;, 9, 2;) be the coordinates of the vertex v; (€ V'), and
let
ajx+bjy+ciz+1=0 (1)

be the equation of the plane containing the face f; (€ F). The
central projection v} = (z}, !, 2}) of the vertex v; onto the picture
plane z =1 is given by

vi =vyi/z, z=1 2

Suppose that we are given the picture D and the incidence
structure I = (V, F, R), but we do not know the exact shape of
P. Then, the coordinates of the projected vertices x; and v} are
given constants, while z; (¢ = 1,2,...,m) and aj,bj,c; (j =

oy = xi/ 2,

1,2,...,n) are unknown variables. Let us define
t; =1/z. (3)
Then, we get
T; = x;/tz Y = y;/tz z; = 1/t;. “4)

Assume that (v;, f;) € R. Then, the vertex v; is on the face
f;, and hence
ajxi+bjyi+cjzi+1 =0 (5)

should be satisfied. Substituting (4), we get
ziaj +yibj +cj+t; =0, (6)

which is linear in the unknowns a;,b;,c; and t; because x} and
y; are known constants.

Collecting the equations of the form (6) for all (v;, f;) € R,
we get the system of linear equations, which we denote by

Aw =0, N

where w = (¢1,...,tm,a1,b1,¢1,...,0n, bn,cn) is the vector of
unknown variables and A is a constant matrix.

The picture D also gives us information about the relative depth
between a vertex and a face. Suppose that a visible face f; hides
a vertex v;. Then, f; is nearer to the origin than v;, and hence
we get

z‘;aj + yéb]’ +cj+1i; <0 ®)

If the vector v; is nearer than the face f;, then we get
z‘;aj + yéb]’ +cj+1i; >0 )

Collecting all of such inequalities, we get a system of linear
inequalities, which we denote by

Bw > 0, (10)

where B is a constant matrix.

The linear constraints (7) and (10) specify the set of all possible
polyhedron represented by the given picture D. In other words,
the set of all «w’s that satisfy the equations (7) and the inequalities
(10) represents the set of all possible polyhedrons represented by
D. Actually the next theorem holds.

Theorem 1. [16]. Picture D represents a polyhedron if and only
if the system of linear equations (7) and inequalities (10) has a
solution.

Hence, to reconstruct a polyhedron from a given picture D is
equivalent to choose a vector w that satisfies (7) and (10). (Refer
to [16] for the formal procedure for collecting the equation (7)
and the inequalities (10) and for the proof of this theorems.)
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III. ROBUST RECONSTRUCTION OF OBJECTS

As seen in the last section, we can characterize the set of
all polyhedra represented by a given picture in terms of linear
constraints. However, these constraints are too strict if we want
to apply them to actual reconstruction procedure. This can be
understood by the next example.

Consider the picture shown in Figure 3(a). We, human beings,
can easily interpret this picture as a truncated pyramid seen from
above. However, if we search by a computer for the vectors w that
satisfy the constraints (7) and (10), the computer usually judges
that the constraints (7) and (10) are not satisfiable and hence the
picture in Figure 3(a) does not represent any polyhedron.

(@ (b)

Fig. 3. Picture of a truncated pyramid: (a) a picture which we can easily
interpret as a truncated pyramid; (b) incorrectness of the picture due to lack
of the common point of intersection of the three side edges that should be
the apex of the pyramid.

This judgment is mathematically correct because of the follow-
ing reason.

Suppose that Figure 3(a) represents a truncated pyramid. Then,
its three side faces should have a common point of intersection
at the apex of the pyramid when they are extended. Since this
apex is also on the common edge of two side faces, it is also
the common point of intersection of the three side edges of
the truncated pyramid. However, as shown by the broken lines
in Figure 3(b), the three side edges does not meet at a corner
point. Therefore, this picture is not a projection of any truncated
pyramid. The truncated pyramid can be reconstructed only when
we use curved faces instead of planar faces.

By this example, we can understand that the satisfiability of
the constraints (7) and (10) is not a practical solution of the
problem of judging the reconstructability of polyhedra from a
picture. Indeed, digitization errors cannot be avoided when the
pictures are represented in a computer, and hence the picture of
a truncated pyramid becomes almost always incorrect even if we
carefully draw it in such a way that the three side edges meet at
a common point.

This kind of superstrictness of the constraints comes from
redundancy of the set of linear equations. Actually, if the vertices
of the truncated pyramid were placed at strictly correct positions
in the picture plane, the associated coefficient matrix A is not of
full rank. If those vertices contain digitization errors, the rank of
the matrix A increases and consequently the set of constraints (7)
and (10) becomes infeasible.

So in order to make a robust method for judging the recon-
structability of polyhedra, we have to remove redundant equations
from (10). For this purpose, the next theorem is helpful. Suppose
that we are given a picture with the incidence structure I =

(V,F, R). For subset X C F, let us define

VIX)={veV|{v} xF)NR+#0},
R(X)=(VxX)NR,

(1)
12)

that is, V(X) (C V') denotes the set of vertices that are on at least
one face in X, and R(X) (C R) denotes the set of incidence pairs
(v, f) such that f € X. For any finite set X, let | X| denote the
number of elements in X. Then the next theorem holds.

Theorem 2 [16]. The associated set of equations (10) is
nonredundant if and only if

V(X)| +3X] > [R(X)| + 4 13)

for any subset X C F such that | X| > 2.

Refer to [Sugihara 1986] for the strict meaning of “nonredun-
dant” and for the proof.

For example, the picture in Figure 3(a) has 6 vertices and five
faces (including the rear face) and hence |V'|+ 3|F| = 21. On the
other hand, this picture has 2 triangular faces and 3 quadrilateral
faces, and hence has |R| = 2 x 3+ 3 x 4 = 18 incidence
pairs in total. Therefore, the inequality (13) is not satisfied and
consequently we can judge that the associated equations are
redundant. Theorem 2 also tells us that if we remove any one
equation from (10), the resulting equation becomes nonredundant.

In this way, we can use this theorem to judge whether the
given incidence structure generates redundant equations, and also
to remove redundancy if redundant.

Using Theorems 1 and 2, we can design a robust method for
reconstructing a polyhedron from a given picture in the following
way.

Suppose that we are given a picture. We first construct the
equations (7) and the inequalities (10). Next, using Theorem 2,
we judge whether (7) is redundant, and if redundant, we remove
equations one by one until they become nonredundant. Let the
resulting equations be denoted by

Alw=0, (14)

where A’ is a submatrix of A obtained by removing the rows
corresponding to redundant equations. Finally, we judge whether
the system of (10) and (14) has solutions. If it has, we can
reconstruct the solid model corresponding to an arbitrary one of
the solutions. If it does not, we judge that the picture does not
represent any polyhedron.

With the help of this procedure, Sugihara found that actual solid
models can be reconstructed from some of pictures of impossible
objects [17], [18].

IV. DISTRIBUTION OF THE DEGREES OF FREEDOM

Let us concentrate on the solutions of eq. (7). This system of
equations contains m + 3n unknown variables, whereas the num-
ber of essentially different equations is represented by rank(A).
Hence, the degrees of freedom in the choice of eq. (7) can be
represented by

m + 3n — rank(A4). (15)

This number can also be interpreted as the degrees of freedom
in the choice of the solid from the picture, because different
solutions of eq. (7) correspond to different solids represented by
the picture. Now, we are interested in how the degrees of freedom
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are distributed; in other words, we want to know how freely we
can deform each part of the solid from an ordinary shape.

We rewrite the vector w = (#1,....tm,a1,b1,c1,...,
@n;bn,cn) of unknowns as w = (u1,u2,...,Umy3n). Let H
denote the set of all unknowns, that is, H = {t;,...,tm,
a1, bi,c1,. ., an,bn,cn}t = {ug,ug, ..., Umyan}. For each u; €

H, let e; be the (m + 3n)-dimensional row vector whose ith
component is 1 and all the other components are 0’s. Then, for
a real number d;, the equation

ei-dei

represents the constraints that the value of the unknown w; is
fixed to d;.

For any subset X C H, let AU {e; | u; € X} denote the
matrix obtained by adding the row vectors in {e; | u; € X} to
the matrix A, and we define p(X) as

p(X) =rank(A U {e; | u; € X}) —rank(A). (16)

p(X) represents the maximum number of unknowns in X whose
values can be fixed arbitrarily and still can construct the solution
of eq. (7). Hence, the value p(X) can be interpreted as the degrees
of freedom of the subset X of the unknowns.

From the definition, p is a rank function of a matroid; indeed
(H, p) is the matroid obtained from the linear matroid consisting
of all the row vectors in the matrix A U {e; | w; € H} by
the contraction with respect to the row vectors in A [21]. This
matroid characterizes the distribution of the degrees of freedom
in the choice of a solid represented by a given picture. Hence, this
matroid gives us information about how freely we can deform a
solid from its natural shape so that we can add physical motions
that look impossible [19], as we will see by examples in the next
section.

V. EXAMPLES

The first examples of the realization of the impossible object
shown in Fig. 1(c) was constructed in the following manner.
First, we construct the system of equations (7) for the picture
in Fig. 1(b), then, removed redundant equations using Theorem
2 and got a non-redundant system (14) of equations. Next, we
got a solution of eq. (14), which represents a specific shape of
the three-dimensional solid. Finally, we computed the figure of
an unfolded surfaces of this solid, and made the paper model by
hands.

Fig. 4 shows another view of this solid. As we can understand
from this figure, some of the steps of the endless stair are not
horizontal, which makes it possible to connected the steps into
an endless loop.

Fig. 5(a) shows another example of an impossible object
constructed in a similar manner. In this object, the near-far
relations of the poles seem inconsistent; some poles are nearer
than others on the floor while they are farther at the ceiling.
This inconsistent structure is essentially similar to that represented
by Escher’s lithograph “Belvédere” in 1958. Fig. 5(b) shows the
same solid seen from a different direction.

Next, let us consider “impossible” physical motions. A typ-
ical example of impossible motions is represented in Escher’s
lithograph “Waterval” in 1961, in which water is running uphill
through the water path and is falling down at the waterfall, and
is running uphill again. This motion is really impossible because
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Fig. 4.
viewpoint.

Endless loop of stairs shown in Fig. 1(c) seen from a different

Fig. 5. “Impossible” columns: (a) shows an impossible structure which is
similar to Escher’s lithograph “Belvédere”; (b) shows another view of the
same solid.

otherwise an eternal engine could be obtained but that contradicts
the physical law.

However, this impossible motion is realizable partially in the
sense that material looks running uphill a slope. An example of
this impossible motion is shown in Fig. 6. Fig. 6(a) shows a solid
consisting of three slopes, all of which go down from the right to
the left. If we put a ball on the left edge of the leftmost slope, as
shown in Fig. 6(a), the ball moves climbing up the three slopes
from the left to the right one by one; thus the ball admits an
impossible motion.

(b)

Fig. 6. Impossible motion of a ball along “Antigravity Three Slopes™: (a) a
ball climbing up the slopes; (b) another view of the same situation.

The actual shape of this solid can be understood if we see
Fig. 6(b), which is the photograph of the same solid as in Fig. 6(a)
seen from another direction. From this figure, we can see that
actually the ball is just rolling down the slopes according to the
natural properties of the ball and the slopes.

Still another example is shown in Figure 7. In this figure, there
are two windows that look connected in a usual manner but a
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straight bar passes through them in an unusual way.

(a) (b)

Fig. 7. “Distorted Windows™: (a) a straight bar passing throw the two
windows in an unusual manner; (b) another view.

VI. CONCLUDING REMARKS

We have presented a method for creating “impossible” objects
and “impossible” motions. In this method, the design of a solid
admitting impossible objects and motions is formulated as a
search for feasible solutions of a system of linear equations and
inequalities. The resulting method enables us to realize Escher’s
impossible world in the three-dimensional space.

The impossible objects and motions obtained by this method
can offer a new type of optical illusion. When we see these objects
and motions, we have a strange impression in the sense that we
feel they are impossible although we are actually seeing them.
Hence it is one of our future work to study this type of optical
illusion from a view point of visual psychology.

Other future problems include (1) collecting other variants of
impossible objects and motions created by the present method,
and (2) formulating the objective functions for selecting optimal
shapes among all the solids specified by the distribution of the
degrees of freedom.
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