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Abstract. Because many of Ramanujan’s theorems were hid-

den from the public for many years, it was natural that

other mathematicians would unknowingly rediscover some

of his unpublished work. We give examples of theorems

from the theory of the Riemann zeta function, summation

formulas, prime number theory, combinatorics, and parti-

tions that have names of others attached to them, but they

were discovered much earlier by Ramanujan.

1. Introduction

Born on December 22, 1887, India’s greatest math-

ematician, Srinivasa Ramanujan, began to record

his discoveries in notebooks in about 1904 when

he entered the Government College of Kum-

bakonam for what was to be only one year of

study. For the next five years, Ramanujan did

mathematics, mostly in isolation, while logging

his findings without proofs in notebooks. Ra-

manujan moved to Madras in 1910 and, while

working as a clerk in the Madras Port Trust Office,

was encouraged by the Manager and Chief Ac-

countant, S. Narayana Aiyar, and the Chairman,

Sir Francis Spring, to write to English mathemati-

cians about his work. After communicating about

120 of his theorems to G. H. Hardy in early 1913,

Ramanujan accepted Hardy’s invitation to go to

Cambridge, and so on March 17, 1914, Ramanujan

departed India for England. At about that time,

from letters that he wrote to friends back home

in Madras [15, pp. 112–113; 123–125], Ramanujan

ceased recording his theorems in notebooks to

concentrate on publishing research that he was

conducting in England. After returning to India

in March, 1919, Ramanujan began to log entries in

what was later to be called Ramanujan’s Lost Note-

book, which was found by George Andrews in the

library at Trinity College, Cambridge in March,

1976. After a lengthy illness, which had confined

him to nursing homes during his last two years

in England, Ramanujan died on April 26, 1920 at

the age of 32.

Ramanujan’s earlier notebooks were not pub-

lished until 1957 [30], and his later lost notebook

was not published until 1988 [31]. Thus, not sur-

prisingly, it transpired that some of Ramanujan’s

discoveries were hidden for many years and were

in the meantime proved by others.

On June 1–5, 1987, a meeting was held at

the University of Illinois to commemorate the

centenary of Ramanujan’s birth and to survey the

many areas of mathematics (and of physics) that

have been profoundly influenced by his work.

One of the speakers, R. William Gosper, remarked

in his lecture, “How can you love this man? He

continually reaches his hand from his grave to

snatch your theorems from you.” The purpose of

this paper is to provide just a few of the many

examples for which others have received credit

for theorems, but unknown to them, their discov-

eries were not original with them; they were first

unearthed by Ramanujan.

2. Ramanujan’s Early Work

A perusal of issues of the Journal of the Indian

Mathematical Society from its inception in 1907 to,

say, the late 1920’s shows that some of the earlier
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papers and problems that Ramanujan submitted

to the Journal of the Indian Mathematical Society

were much in the spirit of mathematics popular

in India at that time. Thus, it is not unexpected

that some articles published in the Journal in the

decade after Ramanujan’s death might contain en-

tries found many years later to be in Ramanujan’s

notebooks. In particular, two papers by M. B. Rao

and M. V. Ayyar [32] and one by S. L. Malurkar

[26] contain several entries from Chapter 14 in Ra-

manujan’s second notebook [30], [9]. We offer one

example from a paper by Malurkar, who studied

physics at Cambridge University and who was

Director of the observatories in Pune and Mumbai

for much of his career.

Theorem 2.1. Let ζ(s) :=
�∞

n=1 n−s, Re s > 1, denote

the Riemann zeta function, and let Bn, n ≥ 0, denote

the nth Bernoulli number. If α and β are positive

numbers such that αβ = π2, and if r is a positive

integer, then
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. (2.1)

Theorem 2.1 can be found as Entry 21(i) in

Chapter 14 in Ramanujan’s second notebook [9,

pp. 275–276]. It also appears in a manuscript of

Ramanujan that was published for the first time

in its original handwritten form with his lost

notebook [31, pp. 319–320, formula (28)]. This

manuscript, along with commentaries, can also be

found in [12] and [1]. The special case α = β = π

was first proved by M. Lerch in 1901 [25]. There

are now several proofs of Theorem 2.1, and refer-

ences to these many proofs can be found in [9,

p. 276] and [1]. An extensive generalisation of

Entry 2.1 can be found in Entry 20 of Chapter 16

in Ramanujan’s first notebook [30], [10, pp. 429–

432], and another one in [11]. Moreover, there are

further generalisations, including analogues for

Dirichlet L-functions.

Ramanujan’s formula (2.1) is fascinating for

several reasons. It is well known that, for each

positive integer n, ζ(2n) can be explicitly evalu-

ated as a rational multiple of π2n containing the

factor B2n. However, except for the fact that ζ(3)

is irrational, which was first proved by R. Apéry

[3], we currently know no further information

about the arithmetical nature of ζ(2n + 1). If we

set r = 2n + 1, n ≥ 0, and α = β = π in (2.1), we

find that ζ(4n+3) can be represented as a rational

multiple of π4n+3 involving Bernoulli numbers plus

a rapidly convergent series. Thus, ζ(4n + 3) is

“almost” a rational multiple of π4n+3.

3. Bell Numbers and Polynomials

Most readers will be familiar with the name of

E. T. Bell because of his popular book [7]. On the

other hand, those with a combinatorial interest

will identify him with Bell numbers and Bell

polynomials. However, these numbers and poly-

nomials should have Ramanujan’s name attached

to them, and not Bell’s, because Ramanujan exten-

sively studied these numbers and polynomials in

Chapter 3 of his second notebook [30], [8], proba-

bly over 30 years before Bell wrote his papers [5],

[6] on these numbers and polynomials.

The Bell polynomials ϕn(x), n ≥ 0, are defined

by

ϕ0(x) ≡ 1, exϕn+1(x) :=
∞
�

k=1

knxk

(k − 1)!
, n ≥ 0.

Readers should verify that ϕn(x) is a polynomial

of degree n, and, in particular,

ϕ1(x) = x,

ϕ2(x) = x + x2,

ϕ3(x) = x + 3x2
+ x3,

ϕ4(x) = x + 7x2
+ 6x3

+ x4.

They can be generated by the exponential gener-

ating function

ex(ea−1)
=

∞
�

n=0

an

n!
ϕn(x).

The nth Bell number B(n), n ≥ 1, is defined by

B(n) = ϕn(1).

For example,

B(1) = 1, B(2) = 2, B(3) = 5,

B(4) = 15, B(5) = 52, B(6) = 203.

Combinatorially, B(n) is equal to the number of

ways of partitioning a set of n objects into subsets.

In early editions of the Japanese classic, The Tale of

Genji, written by Lady Shikibu Murasaki early in

the 11th century, an arrangement of five incense
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sticks can be found at the beginning of each of

the 54 chapters, except for the first and last. Thus,

the author knew that the 5th Bell number equals

52. Readers enjoying poetry might like to know

that the number of ways of rhyming a sonnet is

B(14) = 190, 899, 322.

4. Koshliakov’s Formula and Guinand’s

Formula

The Russian mathematician, N. S. Koshliakov

(1891–1958), is chiefly remembered by a formula

that now bears his name [24]. However, most of

his work has been unfortunately neglected, and

consequently his contributions to mathematics

under appreciated. In 1942, he was arrested on

fabricated charges and sent to a labour camp in

the Ural mountains. Classified as an invalid after

suffering from complete exhaustion, he found

time to do mathematics, often under extremely

difficult conditions, before being released in 1949.

Theorem 4.1 (Koshliakov’s Formula). Let K0(z)

denote the modified Bessel function of order 0, let d(n)

denote the number of positive divisors of the positive

integer n, and let γ denote Euler’s constant. If α and

β are positive numbers such that αβ = 1, then

√
α
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








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

. (4.1)

Why is Koshliakov’s formula interesting? Re-

call that the theta transformation formula
∞
�

n=−∞
e−πn

2/τ
=
√
τ

∞
�

n=−∞
e−πn

2τ, Re τ > 0, (4.2)

is the most common route to the functional equa-

tion of the Riemann zeta function

π−s/2
Γ

�

1
2 s
�

ζ(s) = π−(1−s)/2
Γ

�

1
2 (1 − s)

�

ζ(1 − s). (4.3)

In fact, (4.2) and (4.3) are equivalent. Koshliakov’s

formula (4.1) is an analogue of (4.2), and, as

shown by W. L. Ferrar [20] and by F. Ober-

hettinger and K. L. Soni [28], is equivalent to

the functional equation for ζ2(s) =
�∞

n=1 d(n)n−s,

which, of course, is obtained by squaring both

sides of the functional equation (4.3).

Koshliakov published his proof of Theorem

4.1 in 1929 [24]. However, his formula can be

found on page 253 of the publication contain-

ing the lost notebook [31], which was written in

the last year of Ramanujan’s life 1919–1920. The

volume [31] contains further partial manuscripts

and fragments written by Ramanujan; page 253

is such a page, and so it is possible that Ra-

manujan proved the formula earlier than 1919.

Ramanujan clearly derived Koshliakov’s formula

from “Guinand’s formula”, which can be found

on the same page, and which was first proved

in print by A. P. Guinand [23] in 1955. Thus, on

a single page, Ramanujan reached up his hand

to snatch formulas that had brought fame to two

mathematicians.

Theorem 4.2 (Guinand’s Formula). Let σk(n) =
�

d|n dk, let ζ(s) denote the Riemann zeta function, and

let Kν(z) denote the modified Bessel function of order

ν. If α and β are positive numbers such that αβ = π2,

and if s is any complex number, then

√
α

∞
�

n=1

σ−s(n)ns/2Ks/2(2nα)

−
�

β

∞
�

n=1

σ−s(n)ns/2Ks/2(2nβ)

=
1

4
Γ

� s

2

�

ζ(s){β(1−s)/2 − α(1−s)/2}

+
1

4
Γ

�

− s

2

�

ζ( − s){β(1+s)/2 − α(1+s)/2}. (4.4)

Since Ks(z) = K−s(z), we see that (4.4) is invari-

ant under the transformation s→ −s.

5. Snatching from Guinand Again

Ramanujan’s lost notebook contains at least three

further results that were first proved in print

by Guinand. In this section we examine another

beautiful transformation formula, thought first

to have been established by Guinand [21], but

found ensconced in a two-page partial manuscript

published with the lost notebook [31, p. 220]. For

further examples and details, see the forthcoming

volume [1] by Andrews and the author.

To state this aforementioned formula, we re-

quire some definitions. Set

ψ(z) :=
Γ
′(z)

Γ(z)
∼ log z − 1

2z
− 1

12z2
+

1

120z4

−
1

252z6
+ · · · , (5.1)

as z → ∞, | arg z| < π. Next, Riemann’s ξ-function

is defined by

ξ(s) := (s − 1)π−s/2
Γ(1 + 1

2 s)ζ(s)
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while the Riemann Ξ-function is given by

Ξ(t) := ξ( 1
2 + it).

Theorem 5.1. Define

φ(x) := ψ(x) +
1

2x
− log x.

If α and β are positive numbers such that αβ = 1, then

√
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


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


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






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


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


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
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∞
�
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
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


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π3/2
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�

�

�

�

�

�

Ξ

�

1

2
t

�

Γ

�

−1 + it

4

�
�

�

�

�

�

�

2 cos
�

1
2 t logα

�

1 + t2
dt.

(5.2)

Note that the asymptotic formula (5.1) ensures

the convergence of the infinite series in (5.2). The

appearance of the Riemann zeta function on the

far right side of (5.2) is unexpected. Ramanujan’s

recording of (5.2) is given as formula (7) on page

220 of [31] amidst several examples of Fourier sine

and cosine transforms. In particular, formula (3)

on that page is given as
� ∞

0

(ψ(1 + x) − log x) cos (2πnx) dx

=
1

2
(ψ(1 + n) − log n), (5.3)

i.e., ψ(1 + x) − log x is a self-reciprocal Fourier

cosine transform. Guinand evidently discovered

the first equality in (5.2) in the course of reading

page proofs for [21], for he gives the identity in

a footnote at the end of his paper. Furthermore,

he writes that it “can be deduced from” (5.3).

It is clear that both Ramanujan and Guinand

employed (5.3) in their proofs. Referring to (5.2),

Guinand asserts that “This formula also seems to

have been overlooked.” In [22], Guinand provides

another proof of the first part of (5.2) that also

depends on (5.3), about which he writes, “Pro-

fessor T. A. Brown tells me that he proved the

self-reciprocal property of ψ(1 + x) − log x some

years ago, and that he communicated the result to

the late Professor G. H. Hardy. Professor Hardy

said that the result was also given in a progress

report to the University of Madras by S. Ramanu-

jan, but was not published elsewhere.” In March,

1913, Ramanujan received a scholarship from the

University of Madras, with the only requirement

being that he had to write quarterly reports about

his research. Three such reports were written

before he departed for England in March, 1914.

Hardy’s memory was perhaps flawed, because

(5.3) cannot be found in Ramanujan’s quarterly

reports, which are detailed and discussed in [8],

although it can be found in a partial manuscript

[31, pp. 219–220], which evidently was also in

Hardy’s possession. The second equality in (5.2)

was first proved by the author and A. Dixit

[14], who gave two proofs of the first equality.

Moreover, Dixit [17], [18] has established general-

isations and analogues of (5.2).

6. Dickman’s Function

Dickman’s function ρ(u), first introduced by

K. Dickman in 1930 [16], plays a central role in

prime number theory. For 0 ≤ u ≤ 1, let ρ(u) ≡ 1.

For each integer k ≥ 1, ρ(u) is defined inductively

for k ≤ u ≤ k + 1 by

ρ(u) = ρ(k) −
� u

k
ρ(v − 1)

dv

v
.

Dickman’s function is continuous at u = 1 and

differentiable for u > 1. Equivalently, ρ(u) can be

defined by the differential-difference equation

uρ′(u) + ρ(u − 1) = 0, u > 1.

Let P+(n) denote the largest prime factor of the

positive integer n, and set

Ψ(x, y) := |{n ≤ x : P+(n) ≤ y}|. (6.1)

On page 337 in his lost notebook [31], Ramanujan

offers several asymptotic formulas for Ψ(x, xǫ),

although in a different language. We quote just

one instance. “Let φ(x) denote the number of

numbers of the form

2a23a35a5 · · ·pap , p ≤ xǫ ,

not exceeding x. Then, for 1
2 ≤ ǫ ≤ 1,

φ(x) ∼ x

�

1 −
� 1

ǫ

du0

u0

�

.” (6.2)

His next formula is for 1
3 ≤ ǫ ≤

1
2 , and so on.

In the notation (6.1), Ramanujan’s function φ(x) =

Ψ(x, xǫ). Ramanujan hence proved Dickman’s [16]

famous asymptotic formula

Ψ(x, x1/u) ∼ xρ(u), x→ ∞,

while, in fact, giving a representation for ρ(u) in

terms of integrals, as in the first instance (6.2).

According to the author’s colleague, A. J. Hilde-

brand, Ramanujan’s theorem is equivalent to a
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folklore theorem, which we cannot find located

in the literature.

Theorem 6.1. Define, for u ≥ 0,

I0(u) := 1, Ik(u) :=

�

t1,...,tk≥1
t1+···+tk≤u

dt1 · · · dtk

t1 · · · tk
, k ≥ 1.

Then, for u ≥ 0,

ρ(u) =
∞
∑

k=0

( − 1)k

k!
Ik(u). (6.3)

The series on the right-hand side of (6.3) is

finite, since if k > u, then Ik(u) = 0, for the

conditions t1, . . . , tk ≥ 1 and t1 + · · · + tk ≤ u are

vacuous in this case. If we make the changes of

variable ǫ = 1/u and uj = ǫtj = tj/u, 1 ≤ j ≤ k, then

we obtain Ramanujan’s theorem, the first instance

of which is given in (6.2).

Excellent sources for information on the

Dickman function and its prominence in prime

number theory are G. Tenenbaum’s treatise [33,

Chapter III.5] and P. Moree’s dissertation [27].

7. Ranks and Cranks

Let p(n) denote the number of unrestricted parti-

tions of the positive integer n. In 1944, F. Dyson

[19] sought to find combinatorial explanations for

Ramanujan’s famous congruences [29]

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

Accordingly, he defined the rank of a partition to

be the largest part minus the number of parts. For

example, the rank of 3 + 3 + 2 + 1 is 3 − 4 = −1.

Dyson observed that the congruences for the rank

modulo 5 and 7 divided the partitions of 5n + 4

and 7n+5, respectively, into equinumerous classes.

These conjectures were subsequently proved by

A. O. L. Atkin and H. P. F. Swinnerton-Dyer

[4]. However, for the third congruence, the cor-

responding criterion failed, and so Dyson con-

jectured the existence of a statistic, which he

called the crank to combinatorially explain the

congruence p(11n + 6) ≡ 0 (mod 11). The crank of

a partition was found by Andrews and Garvan

[2] and is defined to be the largest part if the

partition contains no one’s, and otherwise to be the

number of parts larger than the number of one’s

minus the number of one’s. The crank divides the

partitions into equinumerous congruence classes

modulo 5, 7, and 11 for the three congruences,

respectively.

In fact, in his lost notebook [31], Ramanujan

had recorded the generating functions for both the

rank and the crank. First, if N(m, n) denotes the

number of partitions of n with rank m, then

∞
∑

n=0

∞
∑

m=−∞
N(m, n)zmqn

=

∞
∑

n=0

qn2

(zq; q)n(z−1q; q)n
. (7.1)

Second, if M(m, n) denotes the number of parti-

tions of n with crank m, except for a few small

values of m and n, then
∞
∑

n=0

∞
∑

m=−∞
M(m, n)zmqn

=
(q; q)∞

(zq; q)∞(z−1q; q)∞
. (7.2)

In (7.1) and (7.2),

(a; q)∞ := (1 − a) (1 − aq) (1 − aq2) · · · , |q| < 1 .

We do not know if Ramanujan knew the combina-

torial implications of the rank and crank, but from

the many results on these generating functions

found in his lost notebook, it is clear that he had

realised the importance of these two functions.

Moreover, on page 184 in [31] he actually records

an observation that is equivalent to Dyson’s as-

sertion about the congruences for the ranks of the

partitions of 5n + 4.

Except for discerning an alternative formula-

tion of a later discovery of Dyson, in this section

we have strayed slightly from the theme of our

paper to emphasise Ramanujan’s anticipation of

later, fundamental developments in the theory of

partitions. It is also fitting to end our paper on this

topic, because there is evidence that Ramanujan’s

very last mathematical thoughts were on cranks

before he died on April 26, 1920 [13].

We are grateful to Atul Dixit for helpful com-

ments.
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