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1. Kronecker’s Jugendtraum

There is a phrase “Kronecker’s Jugendtraum

(dream of youth)” in mathematics. Leopold Kro-

necker was a German mathematician who worked

in the latter half of the 19th century. He obtained

his degree at the University of Berlin in 1845

when he was 22 years old, and after that, he suc-

cessfully managed a bank and a farm left by his

deceased uncle. When he was around 30, he came

back to mathematics with the study of algebraic

equations because he could not give up his love

for mathematics. Kronecker’s Jugendtraum refers

to a series of conjectures in mathematics he had

in those days — maybe more vague dreams of

his, rather than conjectures — on subjects where

the theories of algebraic equations and of elliptic

functions intersect exquisitely. In the present note,

I will explain the dream itself and then how it is

connected with my dream of the present time.

2. Natural Numbers N, Integers Z and

Rational Numbers Q

Let us review systems of numbers for explaining

Kronecker’s dream. Some technical terms and

symbols used in mathematics will appear in the

sequel and I will give some comments on them,

but please skip them until Secs. 9 and 10 if you

do not understand them.

A number which appears when we count

things as one, two, three, . . . is called a natural

number. The collection of all natural numbers

is denoted by N. When we want to prove a

statement which holds for all natural numbers,

we use mathematical induction as we learn in

high school. It can be proved by using induction

that we can define addition and multiplication

for elements of N (that is, natural numbers) and

obtain again an element of N as a result. But

we cannot carry out subtraction in it. For ex-

ample, 2 − 3 is not a natural number anymore.

Subtraction is defined for the system of numbers

. . . ,−3,−2,−1, 0, 1, 2, 3, . . . . We call such a num-

ber an integer and denote by Z the collection of

integers. For Z, we have addition, subtraction, and

multiplication, but still cannot carry out division.

For example, −2/3 is not an integer. A number

which is expressed as a ratio p/q of two integers

(q � 0) is called a rational number (in particular an

integer is a rational number) and the collection of

them is denoted by Q. Rational numbers form a

system of numbers for which we have addition,

subtraction, multiplication, and division.1 Such a

system of numbers is called a field in mathematics.

We ask whether we can measure the universe

by rational numbers. The answer is “no” since

they still miss two type of numbers: (1) solutions

of algebraic equations, (2) limits of sequences.

In the following Secs. 3 and 4, we consider two

extensions Q and Q̂ of Q, and in Sec 6, both

extensions are unified in the complex number

field C.

3. Algebraic Numbers Q

It was already noticed by ancient Greeks that

one cannot “measure the world” only by ra-

tional numbers. For example, the length of the

,×

,×,

,×, ,÷

=
lim
n→∞

hypotenuse of a right-angled isosceles triangle

with the short edges of length 1 is denoted by
√

2

(Fig. 1) and Greeks knew that it is not a rational

number. If we express
√

2 by the symbol x, then

it satisfies the equation x2 − 2 = 0. In general, a

polynomial equality including an unknown num-

ber x such as a0xn
+ a1xn−1

+ · · · + an−1x + an =

0 (a0 � 0, a1, . . . , an are known numbers called

coefficients) is called an algebraic equation. We

call a number x an algebraic number if it satis-

fies an algebraic equation with rational number
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Fig. 1. We consider a square whose diagonals have the length
2. Then its area is equal to 2, since we can decompose and
rearrange the square into two squares whose side lengths are
equal to 1. Therefore, the side length of the original square is
equal to

√
2.

coefficients. The collection of algebraic numbers,

including rational numbers, is denoted by Q. It

is a field since it admits addition, subtraction,

multiplication, and division. Moreover we can

prove that solutions of algebraic equations whose

coefficients are algebraic numbers are again alge-

braic numbers. Referring to this property, we say

Q is algebraically closed. This Q is an extremely

exquisite, and charming system of numbers, but

we are far from complete understanding of it de-

spite the full power of modern mathematics. Is Q

sufficient to measure the world? Before answering

the question, let us consider another extension of

systems of numbers in the next section.

4. Real Numbers R

Analysis was started in modern Europe by New-

ton (1642–1723) and Leibniz (1646–1716) and fol-

lowed by Bernoulli and Euler. It introduced the

concept of approximations of unknown numbers

or functions by sequences of known numbers or

functions.2 At nearly the same time in modern

Japanese mathematics (called Wasan), started by

Seki Takakazu (1642(?)–1708) and developed by

his student Takebe Katahiro (1664–1739), approx-

imations of certain inverse trigonometric func-

tions by a power series and that of π by series

by rational numbers were also studied. Takebe

wrote “I am not so pure as Seki, so could not

capture objects at once algebraically. Instead, I

have done long complicated calculations.” We see

that Takebe moved beyond the algebraic world,

an area of expertise of his master Seki, and un-

derstood numbers and functions which one can

reach only by analysis (or series). Nowadays, a

number which “can be approximated as precisely

as required by rational numbers” is called a real

number and the whole of them is denoted by R.3

A number which has an infinite decimal repre-

sentation (e.g. π = 3.141592 . . .) is a real number

and the inverse is also true. Thus, numbers, which

we learn in school, are real numbers. Japanese

mathematicians of the time had high ability to

calculate such approximations by using abacuses,

and competed with each other in their skills.

However I do not know to what extent they

were conscious about the logical contradiction

that one cannot reach real numbers in general

without infinite approximations, while the size

of an abacus is finite (even nowadays, we meet

the same problem, when we handle real numbers

by computer). In Japan, we missed the tradi-

tion of Euclid. Some people, old Archimedes in

Greek, Cauchy in France, Dedekind in German

and his contemporary Cantor, tried to clarify the

meaning of “can be approximated as precisely as

required” and now the system of real numbers

R is usually described according to their work.

However, because of an embarrassing problem

found by Cantor,4 understanding of R involves

another kind of hard problem than that of Q.

5. Algebraic Numbers Versus Real

Numbers

Incidentally, I think many mathematicians con-

cern either the understanding of R or that of Q

and have their opinions. Some years ago, I talked

with Deligne, a great mathematician in this age,

at a conference about the completeness of real

numbers. I was deeply impressed, when I heard

him regretfully saying “Real numbers are difficult.

We are far from understanding them”. Actually, Q

has a clue called the absolute Galois group, which

aids our understanding of it,5 while R consists of

all convergent series, which offers little clue for

capturing its elements (in spite deep theory of

approximations of irrational numbers by rational

numbers).

6. Marvelous Complex Numbers C

A complex number z is a number expressed as

z = a + bi, using two real numbers a and b

where the symbol i (called the imaginary unit)

satisfies the relation i2 = −1. The whole R + Ri

of all complex numbers, denoted by C and called

complex number field, carries the both properties:

(i) algebraically closedness like Q, that is, any

non-trivial algebraic equation with coefficients in
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complex numbers always has a solution in com-

plex numbers (Gauss), and (ii) closedness under

taking limits where distance between two com-

plex numbers z1, z2 is measured by the absolute

value |z1 − z2|. Furthermore, every proof of (i)

essentially uses a property, called the conformality

of the product of complex numbers, where a

germ of complex analytic functions can be found.

Euler, who worked in 18th century, using complex

numbers, showed already that the trigonometric

functions and the exponential function, which

were studied separately before, are combined by

the beautiful relation eiz
= cos(z) + i sin(z) (in

particular eπi = −1). Thus, the works of Gauss

and Euler, titans in mathematics, established the

role of complex numbers in mathematics. Then,

there appeared several theories in physics, like

electromagnetic theory, which are described by

an essential use of complex number field. Even

though what we observe are real numbers, quan-

tum mechanics cannot be described without the

use of complex number field. We have no choice

of words but mysterious for the usefulness of

complex numbers to describe laws of physics and

the universe. A complex number which does not

belong to Q is called a transcendental number. It

was proved by Lindemann in 1882 that π is a tran-

scendental number, using Euler’s identity eπi = −1

and the theory of approximations of the analytic

function exp(z) = ez by rational functions, which I

will explain in Sec. 7. Returning to a question at

the end of Sec. 3, we observe now that algebraic

numbers Q alone are not sufficient to measure

the world. However, the complex number field C,

likewise R, carries Cantor’s problem stated in [4],

and the question whether all complex numbers

are necessary or only a very thin part of it is

sufficient remains unanswered.

7. Rational Functions and Analytic

Functions

So far I have described systems of numbers. It is

not just to give an overview of the history, but be-

cause Q and R themselves carry profound actual

problems yet to be understood. Another reason is

that the development of the concepts of numbers

repeatedly became models of new mathematics.

For example, let us consider the collection of poly-

nomials in one variable z, denoted by C[z]. Similar

to Z, it admits addition, subtraction and multipli-

cation between its elements but not division. As

we constructed rational numbers from integers,

we consider a function which is expressed as a

fraction P(z)/Q(z) of two polynomials, called a ra-

tional function, and the whole of them, denoted by

C(z). Then similarly to constructing a real number

from Q, we consider a function which is a limit

of a sequence of rational functions (in a suitable

sense) and call it an analytic function. Let us denote

the collection of such analytic functions by Ĉ(z),

mimicking the notation in [3]. I think the study of

Ĉ(z) is easier than that of R = Q̂ and expect that

the understanding of Ĉ(z) helps that of R = Q̂

as well as of C. The reason is that an element

of R (an element of C) is a limit of sequences of

(Gaussian) rational numbers that provides little

clue for capturing it, while for an element of Ĉ(z)

we have a clue, the variable z. For instance, we

have some freedom to substitute a favorable value

in the variable z as needed. Therefore, we contrast

Q with Ĉ(z) instead of contrasting Q with R = Q̂

as in Sec. 5.

8. Transcendental Functions and Period

Integrals

An element of Ĉ(z) which is not either a rational

function or an algebraic function (in a suitable

sense) is called a transcendental function. The

gamma function Γ(z) and zeta function ζ(z) are ex-

amples of them. However, in what follows let us

discuss about transcendental functions belonging

to different category, namely their Fourier duals.

The exponential function exp(z) and the

trigonometric functions, we have already seen,

are, from a certain viewpoint, the first elementary

transcendental functions appearing after rational

functions. Let us briefly explain the reason. We

learn in high school that the length of an arc

of the unit circle can be obtained as the integral

z =

∫ x

1

|dx|
√

1 − x2
(Fig. 2). For the correspondence

(or map) x �→ z defined by the integral, its inverse

map z �→ x is the trigonometric function x = cos(z).

In other words, the trigonometric functions are

obtained as the inverse functions of the arc in-

tegrals over a circle (a quadratic curve). As we

learn in high school, they are periodic functions

with period 2π and satisfy the addition formulas

(in particular, we can obtain the coordinates of

the points that divide the arc equally into q parts

for a natural number q, by solving an algebraic
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P

Fig. 2. We consider a point P on the circle of radius 1 in the
x-y plane. Then the length (angle) of the arc 1P is given by the

integral z =

∫ P

1

√
dx2 + dy2 =

∫ x

1

|dx|
√

1 − x2
. Then the inverse

of the function x �→ z, we obtain the trigonometric function
x = cos(z).

a-a x

y
r

P

P

Fig. 3. For a positive number a, the lemniscate curve is char-
acterized as the loci of point P where the product of distances
from two points ±a on the x-axis is the constant equal to a2,
and is given by the equation (x2

+ y2)2
= 2a2(x2 − y2). The

length z of the arc P0P on the lemniscate is given by the integral

z =

∫ P

P0

dr
√

1 − r4
where r =

√
x2 + y2. Then, as the inverse of the

function x �→ z, we obtain an elliptic function r = ϕ(z) of period
Z + Zi.

equation of degree ≤ q). Then, arc integrals for

curves of higher degrees and their inverse func-

tions are natural subject of study. The theory of

elliptic functions and abelian functions was born

in that way.6 The length of arcs in a lemniscate

curve (see Fig. 3) is given by

∫
dr
√

1 − r4
. This was

the first studied elliptic integral, 100 years before

Gauss, when an Italian, Fargano, found a formula

for the duplication of arc length of the lemniscate,

and later Euler did the addition formulas (Jacobi

approved it for the start of the theory of elliptic

functions). The inverse function of the lemniscate

integral is, from a modern viewpoint, an elliptic

function having Gaussian integers Z + Zi as its

periods.

9. Kronecker’s Theorem = The First

Contact Point Between Algebraic

Numbers and Transcendental

Functions?

Nowadays the following two statements are

known as Kronecker’s theorems (we refer readers

to the textbooks in [5] and [6] for terminology).

1. Any abelian extension field of the rational

number field is obtained by adjoining values

that are substitutions of rational numbers

p/q to the variable z of the exponential func-

tion exp(2πiz) (for short, the coordinates of

the points of the circle S1
= {z ∈ C | |z| = 1}

that divide it equally into q parts, see Fig. 1)

to the field of rational numbers.

2. Any abelian extension of the Gaussian inte-

gers Z + Zi is obtained by adjoining the coor-

dinate values of the points of the lemniscate

that divide it equally, where the values are

expressed by special values of the elliptic

functions associated with the lemniscate.

Kronecker’s theorems (whose proofs he did not

leave behind) involve both number theory and

transcendental functions related to algebraic ge-

ometry. He devoted his later years of life to

a proof of the advanced proposition that any

abelian extension field of an imaginary quadratic

field is obtained by adjoining solutions of the

transformation equations for elliptic curves with

complex multiplication. He called it “the dearest

dream of my youth (mein liebster Jugend Traum)”

in a letter to Dedekind, a German contemporary

mathematician, when he was 58 years old.

It is said that Kronecker had many likes and

dislikes; “God made the integers, all else is the

work of man (Die ganzen Zahlen hat der liebe

Gott gemacht, alles andere ist Menschenwerk)”

is his saying. According to books of the history,

he thoroughly attacked the set theory of Cantor,

a contemporary German mathematician; Cantor

was distressed with this and entered a mental hos-

pital. Though Kronecker’s mathematics that treats

the exquisite structure of numbers, and Cantor’s

that was reached by thorough abstraction of those

structures4 are quite in contrast, I am attracted

by both of their thoroughness, and the unhappy

relation between them perplexes me. One may

think Kronecker is on the side of Q, but I think

this is a one sided opinion. His results or dreams

turn out to tell about some delicate points where
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Q and Ĉ(z) contact. Kronecker’s Jugendtraum was

later solved by Takagi Teiji in Japan and others,

with the building of class field theory.

10. New Dream

Following Kronecker, let me write about a dream

of my own. Roughly speaking, Kronecker found

that the first step (i.e. abelian extension of Q) of

extending the rational number field Q to its alge-

braic closure Q corresponds to another first step

(i.e. exponential function) of extending the field

of rational functions C(z) to the field of analytic

functions Ĉ(z) in such a manner that the algebraic

extension is recovered by adjoining special val-

ues of the transcendental function. Let us expect,

though we have no evidence so far, that similar

correspondences between algebraic numbers and

transcendental functions exist further, and that

it causes certain “hierarchies” among the cor-

responding transcendental functions.7 Then the

problem is what transcendental functions should

appear.

My Jugendtraum is to construct (some candi-

dates for) such transcendental functions by pe-

riod integrals and their inverse functions, just

like that the classical circle integrals and elliptic

integrals gave birth to exponential and elliptic

functions. To do it, I proposed the theory of

primitive forms and their period integrals as a

higher-dimensional generalization of the theory

of elliptic integrals. More precisely, we have in-

troduced (a) semi-infinite Hodge theory (or non-

commutative Hodge theory) in order to define

the primitive form associated with a Landau–

Ginzburg potential, (b) torsion free integrable log-

arithmic free connections to describe the period

map, (c) the flat structure (or Frobenius structure)

on the space of automorphic forms given as the

components of the inverse maps of period inte-

grals, (d) several infinite-dimensional Lie algebras

(such as elliptic Lie algebras, cuspidal Lie alge-

bras, . . . ) in order to capture primitive forms in

(infinite) integrable systems which are associated

with a generalized root system and with a regular

weight system, and (e) derived categories for giv-

ing a categorical Ringel–Hall construction of those

Lie algebras (every one of them is unfinished). It

is mysterious that some pieces of these structures

I have considered from purely mathematical mo-

tivations have come to be observed in topological

string theory in recent physics. I sincerely wish

these attempts for understanding of the system of

numbers C should also lead to the understanding

of the physics of the universe.

Remarks

[1] To be precise, we do not allow division by 0.

[2] Let us explain a bit more precisely. The collection

of rational numbers is equipped with an ordering.

Then, for two numbers x and y, we define the

distance between them by |x − y| = max{x − y, y − x}
and regard them being closer to each other when

the distance between them becomes smaller. We say

that a sequence y1, y2, y3, . . . approximates a number

x if |x − yn| (n = 1, 2, 3, . . . ) becomes smaller and

closer to 0. We say that an infinite sum (called a

series) y1 + y2 + y3 + · · · converges to x and write x =

y1+y2+y3+· · · , if the sequence y1, y1+y2, y1+y2+y3, . . .

approximates x. E.g. π2/6 = 1 + 1/22
+ 1/32

+ · · · .
[3] One may denote R by Q̂ in the sense that it is an

analytic closure of Q. However Q is also equipped

with another distance than that in [2] called p-adic

non-Archimedean distance for each prime number

p, and we need to distinguish Q̂ from the closure

Qp with respect to the p-adic distance.

[4] Cantor found that, forgetting the structures on

the sets N,Z,Q,Q, one can construct a one-to-one

map between any two of them, while the set R is

properly larger than them. This left the problem

whether an intermediate size between N and R ex-

ists. Although Cantor himself proposed the contin-

uum hypothesis that asserts no intermediate exist,

now it is known that the continuum hypothesis is

independent of the axioms of set theory. Namely

we do not know whether there exists a subset of

R which is properly smaller than R and properly

larger than N or not.

[5] Q is a union of subfields Q(ξ), called number fields

obtained by adjoining finitely many algebraic num-

bers ξ to Q. The projective limit: lim Gal(Q(ξ)/Q) of

Galois groups corresponding to Galois fields Q(ξ)

(where ξ is closed under conjugation) is called the

absolute Galois group. It is equipped with the in-

clusion relation among subgroups (hierarchy struc-

ture) corresponding to extensions of number fields.

Reference: Emil Artin, Algebra with Galois Theory,

American Mathematical Society, Courant Institute

of Mathematical Sciences.

[6] We refer the reader to one best text on elliptic func-

tions and period integrals from analytic viewpoint

by C. L. Siegel: Topics in Complex Function Theory,

Volume 1, Wiley-Interscience Publication.

[7] Hilbert has suggested certain automorphic forms

as such transcendental functions for real quadratic

fields. However, the author does not know whether

it is reasonable to expect further such correspon-

dences. If there exist such correspondences, such
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transcendental functions form quite a thin (ℵ0) sub-

set of the field of all transcendental functions. Those

functions should be, in spite of their transcendency,

special functions which are controlled by an algo-

rithm in a suitable sense. We can imagine many

things, Moonshine for instance. What happens on

the side of transcendental functions correspond-

ing to algebraic extensions with non-abelian sim-

ple groups as their Galois groups. But I do not

think we have examples to assert mathematical

propositions. Can we “resolve” Cantor’s problem

(see [4]) considering only such a thin set of special

transcendental functions and their special values?

For the description of mathematics and physics of

the universe, is such a thin set of transcendental

functions sufficient?

This article was originally published in “Feature” of the

IPMU News, Vol. 09, the issue of the Institute for the

Physics and Mathematics of the Universe (IPMU) in Japan.
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