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Abstract. Ramifications of the finite simple group clas-
sification, one of the greatest triumphs of twentieth
century mathematics, continue to drive cutting-edge
developments across many areas of mathematics. Sev-
eral key applications of the classification are discussed.

The finite simple group classification, announced

by Daniel Gorenstein in February 1981, was one

of the greatest triumphs of late twentieth cen-

tury mathematics, and to this day its ramifi-

cations continue to drive cutting-edge develop-

ments across many areas of mathematics. The

list of finite simple groups is surprisingly short:

for each prime p, the cyclic group Cp of order

p is simple; for each integer n at least 5, the

group of all even permutations of a set of size n

forms the simple alternating group An; there are

finitely many additional infinite families of simple

groups called finite simple groups of Lie type; and

there are precisely 26 further examples, called the

sporadic simple groups of which the largest is the

Monster.a

Already in 1981, some consequences of the

classification were “waiting expectantly in the

wings”. For example, we immediately could list

all the finite groups of permutations under which

all point-pairs were equivalent (the 2-transitive

permutation groups) [3].

1. Simple Groups and Algebraic Graph

Theory

For other problems it was unclear for a number

of years whether the simple group classification

could be applied successfully in their solution.

One of the most famous of these was a 1965 con-

jecture of Charles Sims at the interface between

permutation group theory and graph theory. It

was a question about finite primitive permutation

groups. The primitive groups form the building

blocks for permutation groups in a somewhat

similar way to the role of the finite simple groups

as building blocks (composition factors) for finite

groups. Sims conjectured that there is a function

aContaining 808,017,424,794,512,875,886,459,904,961,710,757,
005,754,368,000,000,000 elements!

f on the positive integers such that, for a finite

primitive permutation group in which a point

stabiliser H has an orbit of size d, the cardinality

of H is at most f (d). In graph theoretic language:

for a vertex-primitive graph or directed graph

of valency d (each vertex is joined to d other

vertices), there are at most f (d) automorphisms

(edge-preserving permutations) fixing any given

vertex. Proof of the Sims Conjecture [5] in 1983

required detailed information about the subgroup

structure of the Lie type simple groups, and was

one of the first nontrivial applications of the finite

simple group classification in Algebraic Graph

Theory, see [6, Section 4.8C]. The new approach

in [5] was later developed into a standard frame-

work for applying the simple group classification

to many problems about primitive permutation

groups and vertex-primitive graphs.

Stunning new applications of the simple group

classification in Algebraic Graph Theory continue

to appear, and many new applications are accom-

panied by deep new results on the structure and

properties of the simple groups. The most recent

exciting developments relate to expander graphs.

These are graphs or networks which are simulta-

neously sparse and highly connected. They have

important applications for design and analysis of

robust communication networks, for the theory

of error-correcting codes, the theory of pseudo-

randomness, and many other uses, beautifully

surveyed in [11]. A family of finite graphs, all

of the same valency but containing graphs of

arbitrarily large size, is an expander family if there

is a constant c such that the ratio |∂A|/|A| is at

least c for every subset A of vertices of any of

the graphs Γ in the family, where A contains

at most half of the vertices of Γ and ∂A is the

set of vertices of Γ at distance 1 from A. The

new results confirm that many families of Cayley

graphs for simple Lie type groups of bounded

rank are expander families. This flurry of activity

began with a spectacular breakthrough by Helf-

gott [9] in 2008 for the 2-dimensional projective

groups PSL(2, p) over fields of prime order p. The
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strongest current results for bounded rank Lie

type groups are consequences of new results for

“growth in groups” by Pyber and Szabo [19], and

independently by Breuillard, Green and Tao [2]

for the finite Chevalley groups.

2. Simple Groups, Primes and

Permutations

Several results about permutation groups have

“simple” statements making no mention of sim-

ple groups, but their only known proofs rely on

the simple group classification, often on simple

group theory developed long after the classifica-

tion was announced. In fact many recent results in

this area demand a deep and subtle understand-

ing of the finite simple groups, especially their

subgroup structure, element statistics, and their

representations.

A surprising link between the number of

primes and the finite simple groups was discov-

ered soon after the announcement of the simple

group classification. It is a result due to Cameron,

Neumann and Teague [4] in 1982. Each positive

integer n ≥ 5 occurs as the index of a maximal

subgroup of a simple group, namely the simple

alternating group An has a maximal subgroup

An−1 of index |An|/|An−1| = n. Let us call n a

maximal index if n = |G|/|H| for some nonabelian

simple group G and maximal subgroup H with

(G, H) � (An, An−1). It was proved in [4] that

max (x)/π(x)→ 1 as x→ ∞,

where max (x) is the number of maximal indices at

most x and π(x) is the number of primes at most x.

The limiting density of the set of maximal indices

is “explained” by the fact that, for each prime

p, the projective group PSL(2, p) acts primitively

on the projective line PG(1, p) of size p + 1, and

so has a maximal subgroup of index p + 1. The

major motivation that led to this result was its

consequence for primitive permutation groups,

also proved in [4]: the number Dprim(x) of integers

n for which there exists a primitive permutation

group on n points (that is, of degree n), other than

Sn and An, satisfies Dprim(x)/π(x) → 2 as x → ∞.

Beside the primitive actions of PSL(2, p) of degree

p+1, the cyclic group Cp acts primitively of degree

p, thus accounting for the limiting density ratio 2.

Two decades later I extended this result with

Heath-Brown and Shalev in [8] as part of our in-

vestigation of quasiprimitive permutation groups,

a strictly larger family of permutation groups than

the primitive groups and important in combinato-

rial applications.b The crucial quantity we needed,

in order to determine the behaviour of the degrees

of quasiprimitive permutation groups, turned out

to be the number sim(x) of simple indices at most

x, where by a simple index we mean an index

|G|/|H| of an arbitrary subgroup H of a non-abelian

simple group G such that (G, H) � (An, An−1). We

proved that sim(x)/π(x) also approaches a limit

as x → ∞, and we proved that this limit is the

number

h =
∞∑

n=1

1

nφ(2n)
= 1.763085 . . .

where φ(m) is the Euler phi-function, the number

of positive integers at most m and coprime to

m. The analogous consequence (which had been

our principal motivation for studying sim(x)) was

that the ratio Dqprim(x)/π(x) of the number Dqprim(x)

of degrees n ≤ x of quasiprimitive permutation

groups, apart from Sn and An, to π(x) approaches

h+ 1 as x→ ∞. In this case also, these ratios were

accounted for by various subgroups of the simple

groups PSL(2, p).

My “all-time favourite” example of a deep re-

sult with a deceptively uncomplicated statement

is due to Isaacs, Kantor and Spaltenstein [12] in

1995: let G be any group of permutations of a set

of size n and let p be any prime dividing the

order |G| of G (that is, the cardinality of G). Then

there is at least 1 chance in n that a uniformly

distributed random element of G has a cycle of

length a multiple of p. The hypotheses of this

result are completely general giving no hint that

the assertion has anything at all to do with simple

groups. However the only known proof of this

result relies on the finite simple group classifi-

cation, and in particular uses subtle information

about maximal tori and Weyl groups of simple

Lie type groups. These techniques were the same

as those introduced earlier in 1992 by Lehrer [13]

to study the representations of finite Lie type

groups. I recently worked with Alice Niemeyer

and others to understand the precise conditions

needed for this approach to be effective. We de-

veloped an estimation method in [16] and used

it to underpin several Monte Carlo algorithms

bA permutation group is quasiprimitive if each of its nontrivial
normal subgroups is transitive. Each primitive permutation
group has this property, and so do many other permutation
groups.
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for computing with Lie type simple groups (in

[14, 15]). It produces sharper estimates for the

proportions of various kinds of elements of Lie

type simple groups than alternative geometric

approaches.

3. Simple Groups and Involutions

One of the first hints that understanding the

finite simple groups might be a tractable problem

was the seminal “Odd order paper” of Feit and

Thompson [7] in 1963 in which they proved that

every finite group of odd order is soluble, or

equivalently, that every non-abelian finite simple

group contains a non-identity element x such that

x2
= 1. Such an element is called an involution,

and the Feit–Thompson result, that each non-

abelian finite simple group contains involutions,

had been conjectured more than 50 years ear-

lier by Burnside in 1911. The centraliser of an

involution x consists of all the group elements

g that centralise x in the sense that xg = gx.

The involution centralisers in finite simple groups

are subgroups that often involve smaller simple

groups. Several crucial steps in the simple group

classification involved systematic analyses of the

possible involution centralisers in simple groups,

resulting in a series of long, deep and difficult pa-

pers characterising the simple groups containing

various kinds of involution centralisers.

Some important information about the simple

groups can be found computationally, and key for

this are efficient methods for constructing their

involution centralisers. To construct an involution,

one typically finds by random selection an ele-

ment of even order that powers up to an invo-

lution, then uses Bray’s ingenious algorithm [1]

to construct its centraliser. This worked extremely

well in practice for computing with the sporadic

simple groups. A more general development of

Bray’s method into proven Monte Carlo algo-

rithms for Lie type simple groups over fields of

odd order required delicate estimates of various

element proportions in simple groups — first

given in a seminal paper of Parker and Wil-

son [17] (available as a preprint for several years

before its publication), and then in full detail in

[10]. The estimates and complexity analysis give

a lower bound on the algorithm performance,

but do not match the actual (excellent) practical

performance. A major program is in train to find

a realistic analysis and the first parts have been

completed [14, 18].

The classification of the finite simple groups

was a water shed for research in algebra, combi-

natorics, and many other areas of mathematics. It

changed almost completely the problems studied

and the methods used. To realise further the

power of the classification for future applications,

new detailed information is needed about the

simple groups — and this will be gained both

as new theory and through new computational

advances.
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simple groups of Lie type, preprint (2010).
arXiv:1005.1858v1.

Reproduced from Gazette of Australian Mathematical Soci-

ety, Vol. 38, No. 2, May 2011.

Reproduced from Gazette of Australian Mathematical Society, 
Vol. 38, No. 2, May 2011

July 2011, Volume 1 No 310

Asia Pacific Mathematics Newsletter




