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1.   Introduction 

Although tsunamis have been leaving tragic traces in 

human history from ancient times, all earlier tsunami 

descriptions were based on anecdotal evidence of a few 

survivors, embedded in myths, folklore, and art. Thus, the 

classical Plato description of death of legendary Atlantis 

nowadays looks like a typical sequence of geological 

events triggered by a destructive earthquake and followed 

by a giant tsunami. More recent artwork by Hokusai 

(1760–1849) keeps inspiring tsunami scientists and wave 

professionals by the beauty and realism of depicted 

breaking waves.  

In modern history, the Japan Meteorological Agency 

(JMA) initiated tsunami warning services in 1952, and 

NOAA’s Pacific Tsunami Warning Centre (PTWC, 

Honolulu) was established in 1948 following the deadly 

1946 Aleutian Island earthquake and tsunami. Until 

about 1980, semi-empirical charts (connecting tsunami 

threats to seismic sources) were the only quick 

forecasting tools available. 

During the 80’s and 90’s, due to pioneering work of  

F. Imamura, N. Shuto, C. E. Synolakis and many others, 

fast computers and efficient models have been employed 

for tsunami modelling. In the early stages of the 

computing era, it was not possible to solve the two-

dimensional Boussinesq equations with nonlinear and 

dispersion terms; instead, simplified alternatives became 

popular. In 1999, JMA has introduced the computer 

aided simulation system for quantitative tsunami 

forecasting, in which tsunami arrival times and heights 

are simulated and stored in the database for forecasting 

 

 

Fig. 1. “ Behind the Great Wave at Kanagawa”  by Katsushika 

Hokusai (1760– 1849). 

tsunamis. The JMA has been further updating the system 

and now can issue the forecast 2 to 3 minutes after 

occurrence of an earthquake. Still, the 2011 Tōhoku 

earthquake and tsunami, which claimed 20,000 lives in 

Japan, wiped out several nearshore cities, and critically 

damaged Fukushima Nuclear Power Plant. The overall 

cost could exceed US$300 billion, making it the most 

expensive natural disaster on record.  

Due to the half-century efforts by PTWC and JMA, 

most of the tsunami modelling and forecasting 

capabilities were focused on the Pacific Ocean; in other 

regions, tsunami science and awareness were not 

developed. Not surprisingly, the 2004 Indian Ocean 

Tsunami caught off guard the coastal communities along 

the Indian Ocean shores, killing almost 230,000 people.  

The recent tragic events drew attention to the lack  

of tsunami-warning infrastructure, and triggered a 

worldwide movement to develop tsunami modelling and 

forecasting capabilities. The number of scientists and 

students migrating from different areas into the tsunami 

field has increased significantly, resulting in a re-

examination of established approaches and perceptions, 

and in the development of novel ideas and methods.  

In Singapore, a similar movement has led to the 

development of national earthquake and tsunami 

predictive capabilities, and of a tsunami-warning system. 

This publication highlights some of the most important 

historical milestones that have led to our modern 

understanding of tsunami behaviour.  

2.   Soliton Theory 
 

2.1.   The first scientific encounter of solitons  

One may start the description of tsunami behaviour using 

soliton theory, which is a simplified substitute for a full-

scale tsunami model. In mathematics and physics, a 

soliton is a self-reinforcing solitary wave (a wave packet 

or pulse) that maintains its shape while it travels at 

constant speed. The soliton phenomenon was first 

described by John Scott Russell [12, 13] (Fig. 2), the 

British hydraulic engineer Scott Russell who observed a 

solitary wave in the Union Canal, Edinburgh (UK).  

He reproduced the phenomenon in a wave tank  

(Fig. 3) and named it the “Wave of Translation” [13]. The 

discovery is described here in his own words: 
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Fig. 2. John Scott Russell (1808– 1882). 

“I was observing the motion of a boat which was rapidly 

drawn along a narrow channel by a pair of horses, when 

the boat suddenly stopped—not so the mass of water in the 

channel which it had put in motion; it accumulated round 

the prow of the vessel in a state of violent agitation, then 

suddenly leaving it behind, rolled forward with great 

velocity, assuming the form of a large solitary elevation, a 

rounded, smooth and well-defined heap of water, which 

continued its course along the channel apparently without 

change of form or diminution of speed. I followed it on 

horseback, and overtook it still rolling on at a rate of some 

eight or nine miles an hour [14 km/h], preserving its 

original figure some thirty feet [9 m] long and a foot to a 

foot and a half [300−450 mm] in height. Its height 

gradually diminished, and after a chase of one or two miles 

[2–3 km] I lost it in the windings of the channel.  

Such, in the month of August 1834, was my first chance 

interview with that singular and beautiful phenomenon 

which I have called the Wave of  Translation.” 

Following this discovery, Scott Russell built a 9 m 

wave tank in his back garden and made observations of 

the properties of solitary waves, with the following 

conclusions [12]:  

• Solitary waves have the shape −2 sech ( ( ))a k x ct , 

where a is the wave height, k is the wave number, and 

c is the wave speed; 

• A sufficiently large initial mass of water produces two 

or more independent solitary waves; 

• Solitary waves can pass through each other without 

change of any kind; 

• A wave of height a and travelling in a channel of 

depth h has a velocity given by the expression 

= +( )c g a h , where g is the acceleration of gravity, 

implying that a large amplitude solitary wave travels 

faster than one of low amplitude. 

Throughout his life Russell remained convinced  

that his “Wave of Translation” was of fundamental 

importance, but 19th and early 20th century scientists 

thought otherwise, partly because his observations could 

 

 

Fig. 3. Russell’ s (1844) wave tank to study solitons. 

not be explained by the then-existing theories of water 

waves. Subsequently, the observations were reinforced by 

theoretical work of the French mathematician and 

physicist J. Boussinesq [3]. 

2.2.   Behaviour of solitons  

Soliton propagation could be understood by means of a 

simple convective wave equation  

 η η+ = 0t xc   (1) 

where the wave speed η= ( , , )c c x t  is a function of 

surface elevation η , space x, and time t.  

If c = const, this equation has travelling wave solutions, 

and all waves propagate at the same speed c. Particular 

interest for the subsequent examples attaches to the initial 

condition illustrated in [4] at t = 0  

 
2( ,0) sech ( )x xη = , (2) 

for which the exact solution of Eq. (1) at time t for  

c = const is  

 
2( , ) sech ( )x t x ctη = − . (3) 

Here 
−= = +sech( ) 1/ cosh( ) 2 / ( )x xx x e e .  

If the wave speed is dependent on the wave elevation, 

η= ( )c c , initial wave profiles are generally not self-

preserving. The simplest example is given by η=c , 

which being substituted into the linear, non-dispersive 

wave Eq. (1) yields  

 η ηη+ = 0t x . (4) 

This equation governs a nonlinear wave propagation. 

Using the initial wave profile Eq. (2), solutions for η( , )x t

describe waves such that the profile eventually becomes 

multi-valued and gradient blowup occurs (Fig. 4a). 

Dispersion behaviour of the waves is described with a 

dispersive wave equation  

 η η+ = 0t xxx . (5) 
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This equation has travelling wave solutions 

η
∞

−∞
= +∫ 3( , ) ( )exp( )x t a k ik t ikx dk   

where a(k) is the component amplitude of the Fourier 

transform of the initial profile. If the initial wave profile is 

again in the form of Eq. (2), one can observe that a single 

propagating wave splits (disperses) from the tail and 

resulting in oscillatory waves of different frequency that 

continue to propagate at different speed as in Fig. 4b. This 

behaviour is explicitly embedded in the dispersive wave 

solution depicting shorter harmonics (with larger k) 

propagating left relative the peak of the wave. Hence,  

the solutions η( , )x t  do not describe localised travelling 

waves of constant shape and speed.  

Wave propagation exhibits both nonlinear and 

dispersive behaviour if described with the Korteweg–de 

Vries (KdV) equation:  

 η ηη η+ + = 0t x xxx . (6) 

The equation is named after Korteweg and de Vries 

[9], though the equation was in fact first derived by 

Boussinesq [3]. This equation has localised travelling 

wave solutions (solitary waves) in the form of  

 ( )2( , ) 3  sech ( ) / 2x t c x ctη = − . (7) 

It was then understood that balancing dispersion 

against nonlinearity leads to travelling wave solutions 

(Fig. 4c) as earlier observed by Scott Russell, and this is 

precisely the physical feature of solitons.  

For a tsunami propagating in the ocean, dispersion 

and nonlinearity are not necessarily in equilibrium. In 

somewhat simplistic terms, if nonlinearity dominates 

(usually nearshore) the incident soliton tends to break 

from the front side; whereas in deepwater conditions 

dispersion results in the soliton shedding waves from the 

tail. A tsunami can propagate across the ocean as a series 

of several solitons probably originating from a single 

wave at source.  

 

Fig. 4. Nonlinear and dispersive soliton behaviour: (a) nonlinear 

term only; (b) dispersion term only; (c) nonlinear and dispersion 

terms balanced together. 

3.   Boussinesq-type Equations  

To draw a more complete and accurate picture of 

tsunami behaviour in the ocean, one can use the 

nonlinear water-wave model involving Laplace’s equation 

combined with boundary conditions, nonlinear at the 

free-surface and linear at the sea bottom [5], which can be 

rewritten in dimensionless form as 

 δ ϕ ϕ ϕ+ + =( ) 0xx yy zz  in fluid (8) 

 
ε εϕ ϕ ϕ ϕ η

δ
+ + + + =2 2 2( ) 0

2 2
t x y z  at εη=z  (9) 

 δ η ε ϕ η ϕ η ϕ+ + − =[ ( )] 0t x x y y z  at εη=z  (10) 

 ϕ = 0z  at 1z = − . (11) 

Here ϕ  is the velocity potential, giving fluid velocity 

components ϕ∂=
∂

u
x

, 
ϕ∂=
∂

v
y

, ϕ∂=
∂

w
z

 and η(x ,y ,z , t) 

is the free surface. The scale parameters ε = /a h  and 
2 2/h lδ =  are introduced to represent nonlinearity and 

dispersion, respectively. The horizontal length-scale of 

the sea bed non-uniformities L is assumed to be much 

larger than the wave length l (i.e., γ γ≡ <</ , 1l L ), 

resulting in the sea bed being “mild slope”, and the 

gradient of the sea-bed shape being neglected.  

For the 2004 Indian Ocean Tsunami, a = 1 m in the 

ocean, and up to 10 m nearshore; h = 4000 m and 10 m, 

respectively; l = 400 km and 50 km, respectively. Thus, 

the introduced scale parameters may have ranges: ε = 10−4 

in the ocean and up to 1 nearshore; δ = 10−4 and 10−5, 

respectively.  

Integration of Eqs. (8)–(11) is complicated by the fact 

that the moving surface boundary is part of the solution. 

Direct numerical methods for solving the full equations 

exist, but they are extremely time-consuming and can 

only be applied to small-scale problems. As it is currently 

impracticable to compute a full solution valid over any 

significant domain such as the entire Indian or Pacific 

Ocean, approximations must be adopted, including the 

so-called Boussinesq-type formulations of the water-wave 

problem. 

Following Boussinesq [2], we expand the velocity 

potential in terms of δ without any assumption about ε:  

 
2

0 1 2ϕ ϕ δϕ δ ϕ= + + +⋯  (12) 

and substitute into Eqs. (8)–(11) to derive the unknown 

terms ϕ ϕ ϕ0 1 2, , . 

The idea behind the Boussinesq approximation  

(12) was to incorporate the effects of non-hydrostatic 

pressure, while eliminating the vertical coordinate z, thus 

reducing the computational effort relative to the full 

three-dimensional problem. The assumption that the 

0=t 0>t

(a)

(b)

(c)
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magnitude of the vertical velocity increases polynomially 

from the bottom to the free surface (Fig. 5) inevitably 

leads to some form of depth limitation in the accuracy of 

the embedded dispersive and nonlinear properties. Hence, 

Boussinesq-type equations are conventionally associated 

with relatively shallow water. 

Let us retain all terms up to order δ, ε  in Eq. (9) and 
2 2, ,δ ε δε  in Eq. (10) to obtain 2-D Boussinesq-type 

equations  

δη εη εη+ + + + − ∇ + ∇ =2 2( (1 ) ( (1 ) (( ) ( ) ) 0
6

t x y x yu v u v

 (13) 

 ε η δ+ + + − + =1
( ) ( ) 0

2
t x y x txx txyu uu vu u v  (14) 

 ε η δ+ + + − + =1
( ) ( ) 0

2
t x y y txy tyyv uv vv u v . (15) 

To simplify the set of Eqs. (13)–(15) to a single one, 

we assume a similar small scale for the introduced 

parameters, i.e., δ ε~ ; retain only one dimension  

(x-dependence); eliminate u in linear terms of Eq. (13) 

using Eq. (14), and in nonlinear terms using linearised 

relationship η γ= + ( )u O .  

 

 

 

 

Fig. 5. Vertical structure of the water column beneath the waves: 

(a) hydrostatic assumption; (b) non-hydrostatic assumption.  

Resulting expression (the Boussinesq equation) 

comprised of second and higher order derivatives, can be 

simplified further by letting δ ε γ~ ~ . In physical terms 

the assumption γ <<1  impose wave parameters, such as 

height, length and direction of propagation, to be slow 

varying at a distance of the wave length. In contrast with 

the Boussinesq equation, the condition allow to consider 

the progressive wave solution travelling to one direction 

only, positive or negative with respect to x direction.  

For the positive direction we obtain a single equation, 

universally known as the Korteweg and de Vries (KdV)  

 η εη η δη + + + =  
3 1

1 0
2 6

t x xxx .  (16) 

While deriving Eqs. (13)–(15) we have implicitly 

assumed that δ ε γ<< << <<1,   1,   1  and ~δ ε ; 

therefore, the Boussinesq equations include only the 

lowest-order effects of frequency dispersion and 

nonlinearity. They can account for transfer of energy 

between different frequency components, changes in the 

shape of the individual waves, and the evolution of wave 

groups in the shoaling irregular wave train. However,  

the standard Boussinesq equations have two major 

limitations in their application to long waves on shallow 

water:  

• the depth-averaged model describes poorly the frequency 

dispersion of wave propagation at intermediate depths 

and deep water;  

• the weakly nonlinear assumption is valid only for 

waves of small surface slope, and so there is a limit  

on the largest wave height that can be accurately 

modeled.  

Modern tsunami research experiences two contradictory 

trends, one is to include more physical phenomena 

(previously neglected) into consideration, and another is 

to speed up the code to be used for the operational 

tsunami forecast. 

Although higher-order Boussinesq equations for  

the improvement of the description of nonlinear and 

dispersive properties in water waves have been attempted 

and have been successful in certain respects, most of these 

attempts have involved numerous additional derivatives 

and hence made the accurate numerical solution 

increasingly difficult to obtain. In justification of such 

derivations of higher-order terms in the Boussinesq 

equations, preference has often been given to artificially 

constructed test cases having little (if any) correspondence 

with real tsunamis. The Northern Sumatra (December 

2004) tsunami had provided a new test case for the 

various models. After several decades of intensive 

worldwide research, it is interesting to read the 

conclusion of Grilli et al. [7] that “…in view of the 

apparently small dispersive effects, it could be argued that 

the use of a fully nonlinear Boussinesq equation model is 

overkill in the context of a general basin-scale tsunami 

model. However, it is our feeling that the generality of  

the modelling framework provided by the model is 

advantageous in that it automatically covers most of the 

range of effects of interest, from propagation out of the 

generation region, through propagation at ocean basin 

scale, to runup and inundation at affected shorelines.” 

Even the presence of the third-order derivative terms 

for dispersion in the standards Boussinesq Eqs. (13)–(15) 

is considered challenging enough to be omitted in 

popular operational tsunami modelling codes, such as 

Tunami-N2 [6, 8]. 

Boussinesq equations with omitted dispersion terms 

often are referred to as the Nonlinear Shallow Water 

Equations (NSWE). Alternative simplification suggested 

in MOST [15] and COMCOT [10] is to use NSWE, but 

implicitly include dispersion phenomenon by shaping a 

numerical approximation error in the form of the third-

order derivatives (dispersion terms).  

The optimal code for tsunami modelling must be 

sufficiently fast and accurate; however, the notions of 

speed and accuracy are quickly changing to reflect 
 

(a)                                                     (b)   
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Fig. 6. Maximum wave height computed for the 2004 Indian 

Ocean Tsunami [4]. 

current understanding of tsunami physics as well as 

growing computational power. Hence, in order to assess 

parameters of the currently optimal code, established and 

new approaches need to be regularly re-evaluated to 

ensure that the most important (and yet computationally 

affordable) phenomena are taken into account. The 

importance of some phenomena, potentially capable  

of affecting tsunami propagation characteristics, has  

been quantitatively evaluated by Dao and Tkalich [4]. 

Computations (Figs. 6 and 7) show that the following 

phenomena have been important for the Northern 

Sumatra Tsunami (in reducing order of importance):  

• Astronomical tide at high phase may lead to nonlinear 

increase of the tsunami height up to 0.5 m during high 

tide and increase arrival time by 30 minutes;  

• Reduction of bottom friction lead to increases of  

0.5–1.0 m in the maximum tsunami height nearshore, 

where as in the deep ocean the effect of bottom 

friction is negligible;  

• Dispersion effects have significant influence in the 

deep ocean, leading to a drop of 0.4 m (40%) in the 

computed maximum tsunami height. No significant 

change in arrival time is observed.  

To avoid complex derivatives and unnecessary 

complications posed by the Boussinesq model, Stelling 

and Zijlema [14] proposed a semi-implicit finite 

difference model, which accounts for dispersion through 

a non-hydrostatic pressure term. In both, the depth-

integrated and multi-layer formulations, they decompose 

the pressure into hydrostatic and non-hydrostatic 

components. The solution to the hydrostatic problem 

remains explicit; the non-hydrostatic solution derives 

from an implicit scheme to the 3-D continuity equation. 

The depth-integrated governing equations are relatively 

simple and analogous to the nonlinear shallow-water 

equations with the addition of a vertical momentum 

equation and non-hydrostatic terms in the horizontal 

momentum equations. Numerical results show that both 
 

 

 

 

Fig. 7. Arrival time of first wave computed for the 2004 Indian 

Ocean Tsunami [4]. 

depth-integrated models estimate the dispersive waves 

slightly better than the classical Boussinesq equations.  

4.   Tsunami Warning  

Long before the modern instrumental era, people were 

trying to predict earthquakes and tsunamis using various 

nonscientific means (i.e., all that was then available). In 

Japan, one of the earliest forms of tsunami warning is 

literally cast in stone. “If an earthquake comes, beware of 

tsunamis,” and “Remember the calamity of the great 

tsunamis. Do not build any homes below this point,” read 

stone slabs, hundreds such markers doted Japanese 

coastline, some more 600 years old.  

Nowadays, many scientifically-based methods of 

Earth observation are sufficiently developed and utilised 

[1], or could be developed in a short time-frame [11].  

As most tsunamis are triggered by earthquakes, 

seismometers are the first obvious choice to trigger a 

tsunami warning system and to estimate the source 

parameters. Seismic signals from the near-real-time IRIS 

Global Seismographic Network (Fig. 8a) are commonly 

used to infer an earthquake’s magnitude and epicenter 

location. If a tsunami has been generated, the waves 

propagate across the ocean eventually reaching one of the 

NOAA-developed DART buoys (Fig. 8b), which report sea-

level measurements back to the tsunami-warning centre.  

Two auxiliary sources of tsunami information have to 

be mentioned, i.e., near-shore tide gauges and open-sea 

satellite altimetry. The tide gauge measurements are 

complicated by variations in local bathymetry and 

harbour shapes, which severely limit the effectiveness of 

the data for providing useful measurements for tsunami 

forecasting. Tide gauges can provide verification of 

tsunami forecasts, but they cannot provide the data 

necessary for efficient forecast itself, and definitely not for 

the coast where they are installed. Tsunami detection by 

satellite altimetry is currently restricted by the high cost of 

imaging and low frequency of sampling. 
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(a) IRIS Global Seismographic Network 

 

 
(b) Deep-ocean Assessment and Reporting of  

Tsunamis (DART) global map 
Fig. 8. Existing observation networks. 
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