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Abstract. The Asian continent is particularly exposed to 

catastrophes, both natural and man-made. When disaster strikes, 

event accounts tend to be descriptive and phenomenological, 

leaving open the deeper questions of understanding suited to 

mathematical enquiry. Not only are these questions of intrinsic 

mathematical interest, but their solution contributes to 

mitigating the devastating economic and human loss wrought by 

Asian catastrophes. 

As is apparent from the country’s very own name, in  

the Netherlands, flooding is an ever present threat. When 

an eminent Dutch mathematician, Laurens de Haan, 

wrote a paper titled, “Fighting the Arch-Enemy with 

Mathematics”, it was evident to its people that the subject 

was extreme flood risk, which has historically been a 

lethal scourge of the Netherlands. If a dike is overtopped 

by a coastal storm surge, the consequences can be 

calamitous when the land inside the dike is below sea-

level. Regardless of the height of a dyke, there is always  

a chance, however slim it may be, that it may be 

overtopped. The designated annual tolerance is set very 

low accordingly: 1/10,000. From the statistics of coastal 

water heights measured, it is possible to estimate 

appropriate dike design levels using extreme value 

distributions. De Haan was a prolific contributor to 

extreme value theory, in particular, to distributions F in 

the domain of attraction of an extreme value distribution 

G, where sequences an > 0 and bn (n ≥ 1) exist, such that 

F n (an x + bn) → G(x). 

Although the Netherlands is intrinsically flood-prone, 

the Dutch are thankful to be less vulnerable to other 

forms of geological hazards; windstorms are typically 

more of a threat to agriculture than to people. However, 

for Asians, earthquakes, volcanic eruptions, tsunamis, 

landslides and typhoons may be as severe a personal 

threat as a flood. Indeed, for Dutch researchers analysing 

Earth hazards, their primary scientific laboratory has 

been Indonesia, formerly a Dutch colony known as the 

Dutch East Indies. If the Netherlands is a key example of 

extreme flood risk, Indonesia forms an even more 

important example of extreme geological risk. The 

greatest historical volcanic eruption was the eruption of 

Tambora in 1815, which discharged 150 cubic kilometres 

of ash into the atmosphere. Scientific understanding of 

Nature starts with observations such as this; but why 

should we anticipate cataclysmic events on such an 

enormous scale?  

It took a mathematician, Benoit Mandelbrot, to find 

the answer. For any empirical observation to be deeply 

understood, there needs to be the discovery of a 

mathematical representation. Nature has its own 

geometry, which is not composed of the regular shapes 

familiar from Euclid. Mandelbrot observed that “clouds 

are not spheres, mountains are not cones, and lightning 

does not travel in a straight line”. Furthermore, there is a 

continuum of distinct length scales of patterns: a 

photograph of a small rock may look similar to a 

photograph of a cliff face. Discovering the self-similar 

geometry of coastlines from a British scientist, Lewis Fry 

Richardson, Mandelbrot developed fractal geometry into 

a powerful tool for understanding the natural world, and 

for comprehending the fundamental logarithmic scale of 

natural hazards.  

If natural catastrophes are pathological events 

punctuating the relative tranquillity of geodynamic 

processes, it is because the underlying geometry of Nature 

is also pathological, in a classical Euclidean sense. Taking 

the simple example of a coastline, measured in intervals 

of length ε , approximation by a broken line requires a 

number of intervals proportional to ε –D, where the 

exponent D depends on the jaggedness of the coast. 

The fractal geometry of fault movement is central to 

the size distribution of earthquakes. The magnitude of an 

 
Fig. 1.  On 1 February 1953, a great North Sea storm surge killed 

almost 2000 people in the Netherlands. After this tragedy, 

mathematicians were brought in to assist in calculating dike 

heights. [Photo from BBC News archive] 
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earthquake is correlated to the length of rupture, which 

varies self-similarly from metres to hundreds of 

kilometres. Across the Indian Ocean, from Sri Lanka to 

Thailand, fatalities of the Sumatra tsunami of December 

26, 2004 fell victim to the fractal geometry of Nature. For 

most Asian coastlines threatened by tsunamis, there are 

no engineered tsunami barriers to prevent the ingress of 

tsunami waves. The word “tsunami” is Japanese for 

harbour wave, and the Japanese archipelago is especially 

prone to tsunamis. Tsunami barriers have been 

constructed in Japan, but the design basis has traditionally 

been deterministic, as once it was for dikes in the 

Netherlands. In the absence of any risk-based criterion, 

the worst historical event may be taken as the reference 

for design, possibly with a modest increment as a safety 

margin to reach some notional upper plausible bound. 

The Japanese tsunami of March 11, 2011 was a 

catastrophe of gigantic proportions, greatly exacerbated 

by the under-design of the tsunami protection around the 

Fukushima nuclear power plant. Civil engineers are 

predominantly responsible for safety construction 

standards, but their education has traditionally focused 

on deterministic principles of Newtonian mechanics, 

with comparatively little time for a basic training in 

stochastic processes. Following the practical example of 

Laurens de Haan, mathematicians are needed to assist 

engineers in coming to terms with quantifying the 

uncertainties in the threat environment, so as to improve 

the design of safety-critical infrastructure.  

The magnitude of the earthquake that generated the 

tsunami was 9.0, which was a record for the region, and 

higher than the maximum hitherto anticipated by 

Japanese seismologists from geological arguments, which 

was 8.3. The mathematical theory of records is of intrinsic 

interest in itself, but also can illuminate event sequence 

patterns. Suppose that the following event sequence is 

observed X1, X2, X3…, and that the maxima are M1, M2… . 

The elegant mathematical structure of such record 

sequences has been explored, and affords insight into 

maximum magnitudes, where the regional earthquake 

catalogue is sufficiently extensive.  

Once a tsunami is generated by an earthquake of large 

magnitude, the ocean propagation of the tsunami and its 

run-up on land are analysable by applied mathematicians, 

using the principles of classical hydrodynamics. However, 

the task of forecasting accurately the run-up heights along 

an irregular coastline, allowing for spatial variability in 

bathymetry and topography, is a significant numerical 

modelling challenge. Solution of the nonlinear shallow 

water equations itself can lead to some idealised run-up 

formulae, expressible succinctly and elegantly in terms of 

Bessel function integrals, but the greater spatial 

complexity of actual run-ups is captured on videos of 

destructive tsunamis. Where tsunami barriers are absent 

or deficient, the timing of a call for evacuation is crucial. 

Natives of islands vulnerable to the occurances of 

tsunamis have a reflex reaction to tremors, which is to 

run to higher ground. Repeated false alarms due to 

earthquakes not generating significant tsunamis are 

perceived as a small cost compared with the potential 

benefit of saving lives one day. In modern industrialised 

societies, where the inconvenience of a false alarm is 

much harder to accept, the economic cost of false alarms 

should be quantitatively balanced against the safety 

benefits.  

The quarter of a million who died from the Sumatra 

earthquake and tsunami of December 26, 2004 do  

not constitute the worst death toll in recent times. The 

1976 Tangshan earthquake, which occurred shortly 

before the end of the Maoist era in China, was even more 

tragic. Ranking of the number of fatalities from 

earthquakes around the world yields a power-law known 

as Zipf ’s Law, whereby the frequency of events of rank k 
out of N is proportional to 1/kS. The normalisation factor 

is
 =∑ 1

1/
N

S

n
n . In the limit of infinite N, this is the zeta 

function ς (S). Zipf ’s Law applies to a multitude of 

disaster statistics, from the spread of forest fires to stock 

price plunges. Explorative analysis of Zipf ’s Law affords 

interesting mathematical opportunities for combining 

probability with number theory.  

Because of the fat tails of catastrophe loss 

distributions, it is hardly ever possible to identify and 

prepare for the worst event that might happen. Think of a 

historical Indonesian eruption worse than Krakatau in 

1883, (which killed more than the Japanese tsunami of  

March 11, 2011), and you have Tambora in 1815, which 

caused mass starvation. Imagine an Indonesian eruption 

with a greater global impact than Tambora, and you have 

Toba, which decimated the human population 74,000 

years ago. Funding for disaster preparedness, risk 

 
On July 28, 1976, a massive earthquake destroyed the 

Chinese city of Tangshan, causing the highest earthquake death 

toll in modern times, exceeding a quarter of a million. [Photo 

from US Geological Survey photographic library] 
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Netherlands. In the absence of any risk-based criterion, 
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for design, possibly with a modest increment as a safety 

margin to reach some notional upper plausible bound. 

The Japanese tsunami of March 11, 2011 was a 

catastrophe of gigantic proportions, greatly exacerbated 

by the under-design of the tsunami protection around the 

Fukushima nuclear power plant. Civil engineers are 

predominantly responsible for safety construction 

standards, but their education has traditionally focused 

on deterministic principles of Newtonian mechanics, 
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Bessel function integrals, but the greater spatial 

complexity of actual run-ups is captured on videos of 

destructive tsunamis. Where tsunami barriers are absent 

or deficient, the timing of a call for evacuation is crucial. 

Natives of islands vulnerable to the occurances of 

tsunamis have a reflex reaction to tremors, which is to 

run to higher ground. Repeated false alarms due to 

earthquakes not generating significant tsunamis are 

perceived as a small cost compared with the potential 

benefit of saving lives one day. In modern industrialised 

societies, where the inconvenience of a false alarm is 

much harder to accept, the economic cost of false alarms 

should be quantitatively balanced against the safety 

benefits.  

The quarter of a million who died from the Sumatra 

earthquake and tsunami of December 26, 2004 do not 

constitute to the worst death toll in recent times. The 
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1883, (which killed more than the Japanese tsunami of  
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with a greater global impact than Tambora, and you have 
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Fig. 2.  On July 28, 1976, a massive earthquake destroyed the 

Chinese city of Tangshan, causing the highest earthquake death 

toll in modern times, exceeding a quarter of a million. [Photo 

from US Geological Survey photographic library] 
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mitigation and resilience planning is strictly finite in 

every country; a serious misallocation of funding can 

divert resources away from urgent needs to those of lesser 

importance. On many issues, debates on the foibles of 

human behaviour may be rather academic, but on the 

mitigation of the risk from catastrophes, lives are at  

stake.  

Throughout history, mathematicians have fought 

enlightenment battles against irrationality and illogical 

reasoning and thinking. Disaster prediction is one 

domain where irrationality has been rife, sometimes 

confounded with numerology. Featured in a 2009 

Hollywood disaster movie, “Knowing”, is the integer 

911012996, which happened to be a fifty year-old time 

capsule future reference to the 2,996 victims of the 

terrorist attacks on September 11, 2001. Long integers do 

actually have a link with terrorism; not in forecasting 

disasters but in preventing them. The decryption of 

encoded messages sent by terrorist operatives is vital for 

interdicting plots early, before terrorists move towards 

their targets. With the prospect of communication 

interception, graph-theoretic analysis of the social 

networks of terrorists enables the interdiction likelihood 

to be calculated as a function of cell size. This is a neat 

piece of applied mathematics, but cryptography stands 

out as the quintessential area where man-made Asian 

catastrophes are being fought with mathematics. 

 

 

 

 
Fig. 3.  In 1883, a cataclysmic volcanic eruption occurred on 

the Indonesian island of Krakatau, which generated a giant 

tsunami which killed at least 36,000 people. [1888 lithograph] 
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