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Benford’s Law of First Digits: From
Mathematical Curiosity to

Change Detector
Malcolm Sambridge, Hrvoje Tkalčić and Pierre Arroucau

More than 100 years ago it was predicted that the
distribution of first digits of real world observations
would not be uniform, but instead follow a trend where
measurements with lower first digit (1,2,...) occur more
frequently than those with higher first digits (...,8,9).
This result has long been known by mathematicians
but regarded as mere mathematical curiosity. In the
physical sciences awareness of Benford’s law, as it
became known, has been slow to spread. Recently the
list of phenomena which follow the predictions of the
law has expanded, and physical scientists have begun
to find new ways to put it to practical use.

Major scientific discoveries have often resulted

from the chance recognition of a pattern or trend

in observations. In 1854 J. Snow noticed how

cholera patients had all been drinking from the

same water pump in London [1]. The recognition

of a pattern in data led to the discovery that

cholera spread through contaminated drinking

water, even though bacteria and viruses were

unknown at the time [2]. That breakthrough later

led Louis Pasteur to formulate the theory of germs

which helped lay the foundations of modern mi-

crobiology. Another example is the discovery in

1936 of Earth’s inner core by Inge Lehmann [3].

Lehmann noticed something anomalous in the

seismic recordings of distant earthquakes. Energy

in the form of two new seismic phases were

observed at the surface in places where there

should only be energy of PKP waves propagating

through the liquid outer core. This turned out to

be the first observation of new seismic phases that

could only have been caused by the presence of a

solid inner core. In both cases unexpected patterns

seen in observations led to major discoveries.

Today observations are collected at rates never

before seen, and scientists are constantly seek-

ing new automated ways to detect subtle sig-

nals and extract information from massive data

streams. Examples include experiments to unravel

the basic forces shaping the universe, e.g. the

search for the elusive Higgs particle in the Large

Hadron Collider [4]; detection of gravity waves

[5]; discovery of new drugs [6] and analysis of the

human genome [7]. Recent work by geophysicists

[8] has suggested that an intriguing pattern in

data, first proposed more than 100 years ago, may

provide a new way to detect change in physical

phenomena. The pattern in question is known as

the first digit, or Benford’s law, which itself has

been discovered, forgotten and rediscovered over

the past century.

In this article we briefly introduce the phe-

nomenon, provide some theoretical insight, out-

line recent developments and conclude with the

suggestion that analysis of digits may provide

a novel way of detecting subtle change in data

trends across the physical sciences.

1. A Brief History of the First Digit

Phenomenon

In the 19th century the astronomer Newcomb [9]

first noticed that library books of logarithms were

more thumbed in the earlier pages than the latter.

He explained how this could arise if the frequency

of first digits themselves were not uniform in real

world observations but rather followed the rule

PD = log10

(

1 +
1

D

)

(1)

where PD is the probability of first (nonzero) digit

D occurring (D = 1, . . . , 9). For example, the real

numbers 123.0 and 0.016 both have D = 1, and the

digit law suggests that numbers beginning with

a 1 will occur about 30% of the time in nature,

while those with a first digit of 2 will occur about

17% of the time, and so on down to first digits of

9 occurring about 4% of the time. This decreasing

trend of probabilities with digit is represented

pictorially in Fig. 1, together with some modern

data sets that appear to follow it. The implications

Benford’s Law of First Digits: 
From Mathematical Curiosity to

Change Detector
Malcolm Sambridge, Hrvoje Tkalčić and Pierre Arroucau
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Fig. 1. Benford’s law predictions according to (1) for distributions
of 1st digits compared to the three data sets, (i) photon fluxes for
1452 bright objects identified by the Fermi space telescope, (ii)
248,915 globally distributed earthquakes in the period 1989–
2009, and (iii) 987 reports of infectious disease numbers to
World Health Organisation in 2007. Data from [8]. The 1st digit
distributions from a wide variety of data sets appear to fit the
predictions of the 1st digit law well. [Figure courtesy of Rhys
Hawkins, ANU Visualisation laboratory.]

of the digit rule are significant as not only is

the distribution not uniform, implying that digit

frequencies are not independent, but it must also

hold irrespective of the units of the data and their

source. Hence a universal property of real world

measurements. The result was rediscovered in

1938 by an engineer called Benford [10]. Benford

also extended the law to arbitrary base, B, and to

multiple digits, N. In this case (1) becomes

PD = logB

(

1 +
1

D

)

(2)

where the number of possibilities for D depends

on both B and N and we have BN−1
≤ D ≤ BN

−

1. For example, for two digits N = 2 and there

are 90 possibilities for D, i.e. D = 10, 11, . . . , 99.

As the number of digits increases the probability

distribution becomes flatter and more uniform.

In his original paper Benford showed that

20,229 real numbers drawn from 20 sources all

approximately followed the same first digit rule.

These included populations of cities, financial

data and American baseball league averages. Ben-

ford’s results were well known in mathematical

circles and despite a waning of interest his name

became associated with the law. Thirty years

later the same first digit distribution was noticed

in numbers encountered in computer registries

[11]. This led to the suggestion that advanced

knowledge of the digit frequency encountered by

computers might be used to optimise their design.

It has also been suggested that Benford’s law

may provide a novel way of testing realism in

mathematical models of physical processes [12].

If quantities associated with those processes are

known to satisfy BL then computer simulations

of them should do also. More recently BL has

been shown to hold in stock prices [13] and some

election results [14].

2. Theoretical Insight

Theoretical insight into the origin and reasons for

Benford’s law was provided by [15–17, 12]. It is

known that BL is the only probability distribution

which is both scale and base invariant, properties

which such a rule must have to be universally

applicable. By scale invariance it follows that if

first digits of the variable x follow (1) then so will

the first digits of the rescaled variable λx, for any

value of λ. Since the Benford distribution is the

only one with this property the converse is also

true, i.e. if the first digits of x do not follow (1)

then no rescaling will make them do so. Scale

invariance can be used as a way to measure fit

to the law of any infinite sequence of numbers

[18]. The Fibbonacci sequence is a well known

example, as are many geometric series xn = arn

and dynamical systems of the form xn+1 = x2
n + 1

[19].

A second mathematical result is that even if

individual distributions of real variables do not

follow BL, random samples from those distribu-

tions will tend to follow BL, the so called Random

samples from Random distributions theorem [17].

Over the years there have been a number of

mathematical and statistical explanations put for-

ward for Benford’s law. One of the earliest was by

Feller in his classic 1971 statistical textbook [20],

which was later challenged [21]. Recently Fewster

[22] has put forward a particularly appealing one

for the case of real valued quantities. In that

study an experiment is carried out where the

probability distribution with the worse possible

fit to Benford’s law is solved for a given dynamic

range of the deviates and smoothness of the PDF.

Numerical results show that it becomes increas-

ingly difficult for deviates to fail a goodness of fit

test with respect to fitting Benford as smoothness

of the PDF increases [22]. At the same time other

mathematicians have put forward arguments that

smoothness of a PDF alone does not guarantee

adherence to Benford’s law [21]. For integer se-
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quences the origin of Benford’s law is less well

developed and indeed there appears to be no

single explanation that covers all cases [21].

3. Finite Range Real Numbers

One aspect that appears to have received little

attention is the influence of the finite range of

the data on adherence to Benford’s law. It is

known that Benford’s law of digits will result if

the random deviates have a log-uniform modulo

1 distribution. For real valued random deviates

that span a single decade, i.e. 1 < x < 10, and

have PDF P(x) we have,

PD =

� D+1

D
P(x)dx

� 10

1
P(x)dx

. (3)

If the PDF of the random deviates has a log-

uniform distribution or equivalently P(x) ∝ 1/x

we have

PD =
[ln x]D+1

D

[ln x]10
1

=

ln
�

1 + 1
D

�

ln 10
(4)

which reduces to (1) and hence Benford’s law is

recovered. For the case where the deviates span

multiple decades, i.e. 10α ≤ x ≤ 10 β and β > α + 1

the above integral becomes

PD =
1

Cα, β

β−α
�

i=1

� (D+1)10α+i−1

D×10α+i−1

1

x
dx (5)

where the normalising constant, Cα, β, is obtained

by integrating the probability density over the

whole range

Cα, β =

� 10 β

10α

1

x
dx = (β − α) ln 10. (6)

Evaluating these integrals and combining shows

that once again PD reduces to (1) and hence Ben-

ford’s law is recovered. Therefore the probability

of occurrence of each digit is unchanged when

the data range extends over an integer number of

decades. The situation changes however for the

most general case of arbitrary limits, a × 10α ≤

x ≤ b × 10 β. In this case the integral range can

be separated into three contributions, the first for

the lower end of the range a×10α ≤ x ≤ 10α+1, the

second for the decadal range, 10α+1
≤ x ≤ 10 β,

and the third for the upper non-decadal part

10 β ≤ x ≤ b × 10 β. Evaluating each of these gives

the generalisation of Benford’s law to arbitrary

range log-uniform random deviates

PD =
1

λc

�

(β − α − 1) log10

�

1 +
1

D

�

+ λa + λb

�

(7)
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Fig. 2. Chi-square fit of first digit distributions to Benford predic-
tions (black dots) given by (1) and the finite range theory (blue
dots) given by (7) for 1000 sets of random deviates. The x axis
is the upper coefficient b, the lower coefficient a = 1 and each
data set has 105 deviates spanning three orders of magnitude,
β − α = 3.

where

λc = (β − α) + log10

�

b

a

�

(8)

and

λa =



































log10

�

1 + 1
D

�

: D > a1

log10

�

1+D
a

�

: D = a1

0 : D < a1

(9)

λb =



































0 : D > b1

log10

�

b
D

�

: D = b1

log10

�

1 + 1
D

�

: D < b1.

(10)

Here a1 is the first digit of a and b1 is the first digit

of b. At first sight this looks more complicated

than the original Benford’s law (1) but in fact it

is no more difficult to evaluate. As we would

expect (7)–(10) reduces to (1) when a = 1 or 10,

and b = 1 or 10, and also as the dynamic range

tends to infinity (β−α→ ∞). By following similar

arguments to that above (7) may be extended to

the most general case of multiple digits (rather

than one) and an arbitrary base, B. The result

is almost identical to (7) except that all base 10

logarithms are replaced with logarithms in base

B, and a1 and b1 are replaced with an and bn

indicating the first n digits of the data.

Figure 2 shows results of a numerical exper-

iment comparing the fit of 1000 sets of random

deviates to both Benford predictions given by

(1) and the finite range version (7). A statistical

chi-square measure is used to test goodness of

fit of each first digit distribution to Benford law
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Fig. 3. Histograms of first digit distributions of three proper-
ties of earthquakes. These include 248,915 depths of globally
distributed earthquakes in the period 1989–2009 (source Na-
tional Earthquake Information Center, United States Geologi-
cal Survey), separation times in seconds of 2,258,653 global
earthquakes, and 24,000 ground displacements measured on
a seismometer in Peru over the first 20 minutes of the Sumatra-
Andaman earthquake of 2004.

predictions

χ2
=

9
∑

D=1

(nD − nPD)2

nPD
, (11)

where nD is the observed frequency of digit D and

there are n data in total. As the data range changes

the chi-square goodness of fit is extremely poor

for the standard Benford law and only obtains

the expected value of eight when the deviate

range is a whole number of decades, b = 1 and

10. In contrast the chi-square for the finite range

prediction correctly fluctuates about the expected

value of eight for all data sets. Similar trends are

observed as the dynamic range of the data (β−α)

are altered as well as number of deviates. In all

cases, the predictions from (7) remain accurate.

4. Empirical Evidence in the Natural

Sciences

Belatedly geophysicists have come across Ben-

ford’s law and performed their own survey to test

its presence in the physical sciences [8]. It was

found that a wide range of modern phenomena

appears to follow the digit law. In particular

over 750,000 real numbers drawn from the fields

of Physics, Astronomy, Geophysics, Chemistry,

Engineering and Mathematics. These include the

rotation frequencies of pulsars; green-house gas

emissions, atmospheric temperature anomalies,

masses of exoplanets, photon fluxes detected by

the Fermi space telescope, as well as numbers of

infectious diseases reported to the World Health

Organisation. Random subsets of these data were

also shown to fit Benford’s law better than the

original, which is consistent with predictions of

the random samples theory of Hill [12].

5. Exploiting Benford’s Law

To date the most practical use anyone has found

for Benford’s law is in a forensic mode, e.g. to de-

tect fraud or rounding errors in real world num-

bers. This is possible by examining departures in

the frequencies of individual digits from those

predicted by Benford. This only makes sense once

it is established (often empirically) that the data

follow the law under normal circumstances. This

has been exploited successfully to detect fraud in

a range of situations involving financial data, such

as business accounts, tax returns and stock market

reports [23–25].

The successes in forensic accountancy have

inspired physical scientists to see whether similar

ideas might be applied to detect signals in con-

trast to background noise, e.g. in time series data.

Recently geophysicists showed that Benford’s law

could be used to detect the onset of an earthquake

from the frequencies of first digits of ground

displacement counts recorded by a seismometer

[8]. A summary of some collected results for digit

distributions of earthquake properties is shown

in Fig. 3 and includes their depth, time separa-

tion as well as displacements induced at the sur-

face. Seismologists routinely identify and locate

earthquakes using information from seismograms

recorded at multiple locations across the globe.

The ability to detect an earthquake from just the

first digit histograms of seismic waveforms came

as a surprise because most of the complex in-

formation contained in seismic waveforms would

appear to have been removed when reducing the

signal down to its first digit frequencies. Nev-

ertheless the onset of an earthquake can clearly

be manifested in the digit distribution alone. In-

spired by this example, quantum physicists also

applied Benford’s law to the detection of quantum

phase transitions with apparent success [26].

These examples show that analysis of digit

frequencies has the potential to detect change

in physical phenomena, which may lead to new
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applications in the future. Seismologists have con-

tinued to examine the appearance of the digit

law in their own field. A new data set that

seems to follow Benford is the timing between

earthquakes. Figure 3 shows results for over two

million globally recorded earthquakes of all mag-

nitudes and locations. The same result is achieved

when earthquakes are divided into each magni-

tude range, except for the very large earthquakes

(greater than magnitude eight) for which there

are relatively few recorded in modern times. This

result establishes a background trend for the digit

frequencies of earthquake origin time separations.

It raises the intriguing possibility that Benford’s

law might have applications in the detection of

changes in the characteristics of earthquakes be-

tween regions, or over time. This may be an area

for future exploitation.

6. Concluding Remarks

There is mounting evidence that Benford’s law of

first and later digit distributions may be a com-

mon feature across the physical sciences. While

mathematicians will continue to seek theoretical

justification for its existence, the challenge for

physical scientists is to find new ways to exploit

it. We argue that in situations where Benford’s

law is observed to hold empirically, localised

departures from it are tell-tale features of some

other process at play, perhaps worthy of more

detailed investigation. This is in essence the same

argument used successfully in forensic accoun-

tancy. As awareness of this novel phenomenon

grows among physical scientists it seems likely

that further applications will appear.

Over the years a large number of publications

have appeared on aspects of Benford’s law across

multiple disciplines. This can make it difficult for

newcomers to the subject to appreciate the range

of results already known. Fortunately many pub-

lications are now accessible in a single online bib-

liography http://www.benfordonline.net/
which is a valuable resource for all.
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