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One of the fascinating aspects of the natural world

is the diversity of shapes that make up the animal

and plant kingdoms: the intricate patterns on a

sunflower, the dramatic antlers on a stag, animal

coat markings. The list is endless. How these

patterns arise is one of the mysteries of science

and, despite an enormous amount of research,

most of the fundamental questions remain unan-

swered. Although genes obviously play a role in

development, knowing the genetic make-up of an

organism does not allow us to understand the

mechanisms of development — we may know

that certain genes impart particular properties to

certain cells, but how this then leads to tissue-

level behaviour cannot be addressed by genetics.

The problem that Turing addressed in his sem-

inal paper, “The chemical basis of morphogene-

sis” (Turing [9]) was precisely this — how can

a tissue be patterned? He presented a theory in

which he proposed that cells actually respond

to a chemical pre-pattern. For example, consider

a growing tree. To a good approximation, its

horizontal cross-section can be considered to be

circular. When a branch begins to bud off the

side, this symmetry is broken. Turing proposed

that if an underlying pattern of growth hormone

went through a symmetry-breaking transition (or

bifurcation, as we would now call it) then there

would be more hormone in one place than in the

others, and this would initiate a bud. He extended

this notion to that of a morphogen, namely a chem-

ical to which cells respond by differentiating in a

concentration-dependent way.

To generate spatial patterns in a chemical

system he proposed an ingenious mathematical

theory. He considered a system of morphogens

reacting and diffusing in such a way that, in the

absence of diffusion, they exhibited a spatially

uniform steady state which would be stable. He

then showed that the introduction of diffusion

could lead to an instability (now the well-known

diffusion-driven instability) resulting in a spatially

heterogeneous pattern of chemical concentrations.

This was the first example of what is now called

an emergent phenomenon in the sense that the be-

haviour of the system, in this case a patterning in-

stability, emerges from the components and is not

part of the components. In his system, the reaction

kinetics are stabilising and we know that diffusion

is stabilising in the sense that it homogenises

spatial patterns. Therefore, two stabilising sys-

tems interacted to produce an instability. In other

words, he recognised that it was the integration

of components that gave rise to the structures

and behaviours we observe, rather than each be-

haviour being encoded in its own component. The

latter was very much the common view amongst

biologists of the time, a view that continued to

prevail for many decades thereafter. So, it is no

exaggeration to say that in this area, Turing was

far ahead of biologists and mathematicians!

Turing’s 1952 paper has influenced many biol-

ogists and mathematicians. The latter have found

that the model, a coupled system of nonlinear

parabolic equations, has an enormous richness of

behaviours (see, for example, the books by Britton

[2], and Murray [7]), while the former have looked

for, and found, morphogens. However, the theory

was really brought to the attention of mainstream

developmental biologists by Hans Meinhardt, in

a paper with Alfred Gierer in 1972 (see Mein-

hardt [5], and references therein). Meinhardt in-

troduced the idea of short-range-activation-long-

range-inhibition and this has proved to be a

general patterning principle. Briefly, suppose that

one morphogen promotes (activates) another mor-

phogen which, in turn, inhibits the first mor-

phogen. One can easily imagine how this could

lead to a stable equilibrium state. If now one

allows the inhibitor to diffuse more quickly than

the activator, then the equilibrium can be broken,

leading to a local high concentration of activator,

surrounded by a ring of high inhibitor concentra-

tion — a spatial pattern. From this rather coarse
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verbal “explanation” it is not obvious how very

complex patterned structures can arise, but a com-

bination of mathematical analysis and numerical

simulation shows that the model can exhibit an

enormous range of patterns and it has been ap-

plied to regeneration in hydra, limb development,

formation of animal coat patterns, shell pigmen-

tation patterns, to name only a few (see, for

example, Murray [7] and Meinhardt et al. [6]). In

fact, most models of biological pattern formation,

whether they consider cells interacting with each

other and modifying their environment through

physical and/or chemical cues to produce cell

aggregations, or neurons interacting with each

other to lead to ocular dominant stripes, all come

under the above patterning principle.

As well as being able to reproduce a vast num-

ber of observed patterns, the Turing model can

also shed light on why certain patterns display

certain features, so-called developmental constraints.

However, when it comes to a detailed analysis

of pattern formation the original Turing model

fares less well. It was proposed to describe the

stripe-like patterns of pair-rule genes in Drosophila

but it was then shown experimentally that each

stripe is formed independently of the others, rul-

ing out the Turing mechanism (Akam [1]). It has

also been shown that the model can be very sen-

sitive to small changes in parameter values, initial

morphogen fluctuations, and geometry, calling

into question its ability to robustly reproduce pat-

terns. However, it has been shown that extending

the model in a number of ways can overcome this

problem. Perhaps the greatest problem facing the

Turing model is that, although morphogens have

been shown to exist, there is no definitive proof as

yet, that they interact and pattern in the way Tur-

ing proposed. Turing structures have been shown

to occur in chemistry (see, for example, the paper

by Horváth et al. [4]) and there is now evidence

emerging that they may indeed be occurring in

some biological systems (Garfinkel et al. [3]; Sick

et al. [8]).

To evaluate the impact of Turing’s theory of

morphogenesis one really needs to ask the bigger

question of how does one evaluate any model. As

Turing himself said, “This model will be a sim-

plification and an idealisation, and consequently

a falsification. It is to be hoped that the features

retained for discussion are those of greatest im-

portance in the present state of knowledge.” Or

to quote George Box, “All models are wrong, but

some are useful”. While there is no definitive

proof of Turing models operating in nature, he

was the first to put forward concisely the ideal

of a morphogen (now well accepted) and the

first to show how instability could arise from

two stabilising processes interacting. Moreover,

Meinhardt’s extension to the idea of activators

and inhibitors now permeates the experimental

literature in developmental biology and there

have been enormous advances in mathemati-

cal and computational approaches motivated by

these models. Turing’s work in biological pattern

formation was well ahead of its time and it contin-

ues to motivate and inspire experimentalists and

theoreticians alike.
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