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Turing’s Paper on Rounding-Off
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Before 1940, solving a set of n linear equations

with n ≥ 10 was regarded as a very challeng-

ing problem. Several direct methods were used

for solving linear equations, but only during

the 1940s did mathematicians realise that most

of those direct methods were closely related to

Gaußian elimination, and also to the factorisation

of a square matrix as a product of lower and

upper triangular matrices. Some linear problems

in physics and engineering had been solved by

indirect methods of successive approximation,

which later were systematised as various iterative

methods.

As more powerful calculating machines were

developed, some scientists began solving larger

sets of linear equations. But serious concern was

felt about the effects of round-off in the compu-

tation, which might produce large errors in the

computed solution for n > 10 (von Neumann

& Goldstine [5, footnote 11]). At a conference in

1941, Harold Hotelling argued (Hotelling [2]) that

in solving a set of n equations the calculation

should be done with n log10 4 extra figures —

for each type of machine that implied severe

limitations on the size of linear systems which

could be solved.

In 1947, John von Neumann and Herman H

Goldstine published their very detailed study of

“Numerical inverting of matrices of high order”,

in which they concentrated mainly on inversion

of symmetric positive-definite matrices. They ex-

pressed upper bounds for the error of the com-

puted inverse in terms of “various quantities

and properties which cannot be supposed to be

known when the problem of inverting a matrix

A or AI comes up”, including the maximum and

minimum moduli of eigenvalues of the matrix

(von Neumann & Goldstine [5, p. 1089]). They

anticipated that, when electronic digital comput-

ers become available for inverting matrices, then

n ∼ 100 will become manageable (von Neumann

& Goldstine [5, p. 1031]).

They remarked that “An approximate inverse

of a matrix P might be defined as one which lies

close to the exact inverse P
−1

. From the point

of view of numerical procedure it seems more

appropriate, however, to interpret it as the inverse

P′−1 of a matrix P′ that lies close to P that is, to

permit an uncertainty of, say, ǫ in every element

of P”. (von Neumann & Goldstine [5, p. 1092]).

That seems to be the earliest published mention

of backward error analysis.

In 1948, Alan Mathison Turing published his

influential paper on “Rounding-off errors in ma-

trix processes” (Turing [4]). At the National Phys-

ical Laboratory he had collaborated with Leslie

Fox, Harry D Huskey and James H Wilkinson

in extensive tests of the elimination method on

many sets of linear equations (Fox, Huskey &

Wilkinson [1]). He reported that “Fox found that

no exponential build-up of errors such as that

envisaged by Hotelling actually occurred. In the

meantime another theoretical investigation was

being carried out by J von Neumann, who reached

conclusions similar to those of this paper for the

case of positive definite matrices, and communi-

cated them to the writer at Princeton in January

1947 before the proofs given here were complete”

(Turing [4, p. 288]).

If a set of linear equations Ax = b is to be

solved for a single vector b then the computa-

tional cost is about one-third of that for inverting

A and then evaluating x as A−1b; but if solu-

tions are required for several vectors b then A

should be inverted. Turing considered that “It

seems probable that with the advent of electronic

computers it will become standard practice to find

the inverse”. However, good computing practice

still uses solution (and not inversion) for the usual

case of a single vector b. Turing gave a construc-

tive proof that if the principal minors of the matrix

A are non-singular then A factorises as A = LDU

uniquely, where L is a unit lower triangle, D is

a diagonal matrix and U is a unit upper triangle.

(Likewise A = U′D′L′ uniquely, where L′ is a unit
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lower triangle, D′ is a diagonal matrix and U′ is

a unit upper triangle.) (Turing, [4, p. 289]). He

then used the LDU factorisation to construct the

Gaußian elimination method, Jordan’s method for

inversion, Morris’s escalator method and the or-

thogonalisation method for constructing an upper

triangular matrix M such that AM is orthogonal.

The transpose of a real matrix A is denoted

by A∗. Choleski’s method is recommended for

symmetric A, constructing the lower triangular

matrix LD
1/2, which “may involve some purely

imaginary numbers, but no strictly complex ones”

(Turing [4, p. 295]). He did not mention the sim-

pler real symmetric rational Choleski factorisation

A = L
∗
DL, in which some diagonal elements of D

will be negative if A is not positive definite; and

he did not discuss the numerical stability of the

factorisation in that case.

Turing considered three ways in which the

magnitude of a matrix may be measured by a real

number (Turing [4, p. 297])

The norm N(A)
def
= (trace A

∗
A)1/2

=

√

∑

i,j a2
ij
.

The maximum expansion

B(A)
def
= max

x

|Ax|
|x|
= max

x

√

(Ax, Ax)
√

(x, x)
.

The maximum coefficient M(A)
def
= maxi,j |aij|.

Of those three measures, N(A) and B(A) are

probably of greatest theoretical significance. But

B(A) is difficult to compute, and so Turing dealt

chiefly with the much simpler measure M(A).

He listed several inequalities relating those three

measures.

Ill-conditioned matrices and equations are

considered in [4, Sec. 8]. “The expression ‘ill-

conditioned’ is sometimes used merely as a term

of abuse applicable to matrices or equations, but

it seems most often to carry a meaning somewhat

similar to that defined below.

Consider the equations

1 · 4x + 0 · 9y = 2 · 7
−0 · 8x + 1 · 7y = −1 · 2

}

(8.1)

and form from them another set by adding one-

hundredth of the first to the second, to give a new

equation replacing the first

−0 · 786x + 1 · 709y = −1 · 173
−0 · 800x + 1 · 700y = −1 · 200

}

. (8.2)

The set of Eq. (8.2) is fully equivalent to (8.1),

but clearly if we attempt to solve (8.2) by nu-

merical methods involving round-off errors, we

are almost certain to get much less accuracy than

if we worked with Eq. (8.1). We should describe

the Eq. (8.2) as an ill-conditioned set, or, at any

rate, as ill-conditioned compared with (8.1). It is

characteristic of ill-conditioned sets of equations

that small percentage errors in the coefficients

given may lead to large percentage errors in the

solution” ([4, pp. 297–298]).

He defined N(A) N(A−1)/n as the N-condition

number of A, and he defined nM(A) M(A−1) as the

M-condition number of A. Nowadays the standard

condition number of A is κ(A)
def
=

√
λn/λ1 where λ1

and λn are the minimum and maximum eigen-

values of A
∗
A, and that can be represented as

κ(A) = B(A)B(A−1).

The problem of inverting a general (non-

singular) matrix A can be reduced to the inversion

of a positive definite matrix, since A
∗
A is positive

definite and A
−1
= (A∗A)−1A

∗. (von Neumann &

Goldstine [5, p. 1056]) and similarly for solving

the equation Ax = b. But Turing pointed out that,

as well of the cost of the extra matrix multipli-

cation, such a normalisation makes the equations

more ill-conditioned (Turing [4, p. 296]). Indeed, if

that process is applied to a positive definite matrix

A then the condition number of the normalised

matrix A
∗
A is the square of the condition number

of A. Hence, if A is ill-conditioned for inver-

sion, then A
∗
A is much more ill-conditioned for

inversion.

After A has been factorised and used (with

round-off) to compute an approximate solution x1

to the equation Ax = b, that approximate solution

can be refined by computing the “residual” vector

b1 = b − Ax1. Using the existing factorisation of A

the equation Ax2 = b1 can be solved (with round-

off) to give a refined estimate of the solution x

as x1 + x2. And that refinement could be iterated,

until an acceptably small residual vector is found

(Turing [4, p. 300]). But Turing did not point out

that the residual vector x1 should be computed

with more significant figures than were used in

computing x1.

Turing then analysed the effects of round-off

errors in several methods for inverting matrices

and solving equations, and he explained that

“Our main purpose in this paper is to establish

that the exponential build-up of errors need not

occur, and this will be proved when we have

found one method of inversion where it is absent”

(Turing [4, p. 302]).
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He gave a statistical analysis of the effect of

round-off errors in Jordan’s inversion method

when “we are working to a fixed number of deci-

mal places both in the reduction of the original

matrix to unity and in the building up of the

inverse. It is not easy to obtain corresponding

results for the case where a definite number of

significant figures are kept, but we may make some

qualitative suggestions. . . . In the case of positive

definite, symmetric matrices it is possible to give

more definite estimates for the case where calcu-

lation is limited to a specific number of significant

figures. Results of this nature have been obtained

by J v Neumann and H H Goldstine” (Turing [4,

pp. 304–305]).

He then remarked that “It is instructive to

compare the estimates of error given above with

the errors liable to arise from the inaccuracy of

the original matrix. If we desire the inverse of

A, but the figures given to us are not those of A

but of A − S, then if we invert perfectly correctly

we shall get (A − S)−1 instead of A−1, that is, we

shall make an error of (A − S)−1 − A
−1, i.e. of

(1−A
−1

S)−1A
−1

SA
−1. If we ignore the second-order

terms this is A
−1

SA
−1”. (Turing [4, p. 306]).

Round-off error analysis had been performed

by constructing bounds for the error of the

rounded result of a single arithmetic operation

upon a pair of variables, each of which had initial

error bounds (which could be 0). Throughout a

lengthy computation the successive error bounds

generally increased very rapidly. That so-called

forward error analysis became extremely compli-

cated for large calculations (as in Hotelling [3] and

von Neumann & Goldstine [5]), and the errors of

the final results were usually very much smaller

than the computed error bounds. In the previous

paragraph, Turing gave one of the earliest exam-

ples of backward error analysis, which starts from

the actual solution (computed with round-off and

truncation errors etc.) of a given equation, and

which constructs bounds for a perturbation of the

original equation such that the actual computed

output satisfies exactly the perturbed equation.

That backward error analysis is usually simpler

than forward error analysis, and if the original

equation includes measured data (which is subject

to uncertainty) then such backward error analysis

is more physically meaningful than forward error

analysis. James H Wilkinson greatly developed

backward error analysis, and he demonstrated its

effectiveness for many types of problem in his

very influential treatise (Wilkinson [6]).

In 1947 Turing’s colleagues concluded their

joint study of round-off error in many sets of

linear equations solved by the elimination method

with the following statement: “Hotelling (7) has

implied that the building-up error in the elimina-

tion methods is so large that these methods can be

used only with extreme caution. Turing’s analysis

shows that this estimate can be reached only in

the most exceptional circumstances, and in our

practical experience on matrices of orders up to

the twentieth, some of them very ill-conditioned,

the errors were in fact quite small.” (Fox, Huskey

& Wilkinson [1, p. 173]).

In the Collected Works of A M Turing (1992),

Frank D Burgoyne commented that “Turing’s pa-

per was one of the earliest attempts to examine

the error analysis of the various methods of solv-

ing linear equations and inverting matrices. His

analysis was basically sound. The main impor-

tance of the paper was that it was published at the

dawn of the modern computing era, and it gave

indications of which methods were ‘safe’ when

solving such problems on a computer”. (Turing

[4, p. XII]).
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