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1. Compressive Sensing

Consider a one-dimensional, finite-length signal
x ∈ CN. We will vectorise a two-dimensional
image or higher-dimensional data into a long one-
dimensional vector. Many real-world signals can
be well-approximated by sparse or compressible
under a suitable basis. Let Ψ = [ψ1|ψ2| · · · |ψN] be
an orthonormal basis. Then a signal x can be

expressed as x =
N∑

n=1

〈x,ψn〉ψn. We say that x is

k-sparse under Ψ if {fn = 〈x,ψn〉}n=1,...,N has only
k-nonzero coefficients, and that x is compress-
ible under Ψ if {〈x,ψn〉}n=1,...,N has a few large
coefficients.

Compressive sensing is that a sparse signal
can be recovered from what was previously be-
lieved to be incomplete information. Consider
Φ = [φ1|φ2| · · · |φN] ∈ CM×N for some M < N.
Then, we can obtains b = Φx = ΦΨf = Af where
A = ΦΨ. The measurements Φ is fixed and does
not depend on the signal x and then A is selected
independent of f . A is referred to as the encoder
and obviously encoder is linear. In the encoder,
we need to design a good sensing matrix A. The
decoder is the attempted recovery of f from its
sensing matrix A and b. We define ||f ||0 := |supp f |
for a signal f . The quantity || · ||0 is often called
�0-norm although it is actually not a norm. With
a sparsity prior, a natural decoder is to search for
the sparsest vector f that b = Af :

min || f ||0 subject to b = Af . (1)

We need to check that if the problem (1) has a
solution, the solution is unique. For given matrix
A, spark(A) is the smallest number of columns
that are linearly dependent. Using this concept,
we get a condition of uniqueness. Let x0 be a k-
sparse N-dimensional vector, let A be a matrix of
M × N, and let y = Ax0. If k < spark(A)

2 , then x0

is a unique solution of problem (1). Conversely,
if k ≥ spark(A)

2 , then (1) does not have x0 as
its unique solution. Since the decoder is well-
defined for small k, we need an efficient recon-
struction algorithm. Unfortunately, the problem

(1) is combinatorial problem and NP-hard in gen-
eral. Essentially two approaches have mainly been
pursued: greedy algorithm and convex relaxation.
We will introduce greedy algorithms and convex
relaxation for solving (1).

2. Greedy Algorithm

A greedy algorithm computes the support of sig-
nal iteratively, at each step finding one or more
new elements and subtracting their contribution
from the measurement vector. Examples include
Matching Pursuit (MP), Orthogonal Matching
Pursuit (OMP), stagewise OMP, regularised OMP,
weak OMP. We introduce MP and OMP here.

In 1993, Matching Pursuit is proposed by
S Mallat and Z Zhang [17]. Matching Pursuit is
an algorithm that decomposes any signal into a
linear expansion of atoms that are selected from
a redundant dictionary. Let ai be i-th column of
A and xi be i-th component of x. Assume that
||ai||2 = 1 for all i. Equation Ax = b is equivalent to
b = x1a1 + · · ·+ xNaN. We want to compute a linear
expansion of b over a set {ai : i = 1, 2, . . . , N} and
their coefficients are sparse. The idea of Matching
Pursuit is choosing column of A, in order to best
match its inner product structures. For a signal f ,
f can be decomposed to

f = 〈 f , ai〉ai + Rf ,

where Rf is the residual vector. Clearly, ai is
orthogonal to Rf . So,

|| f ||22 = |〈 f , ai〉|2 + ||Rf ||22
by Pythagoras theorem. We have to choose ai such
that |〈 f , ai〉| is maximum in order to minimise ||Rf ||.
Using this idea, we iteratively choose the column
of A that has highest absolute inner product with
current residual vector ri = b−Axi and inner prod-
uct of selected column aj is added to coefficient xj.

Orthogonal Matching Pursuit [6, 20] is im-
proved Matching Pursuit by orthogonalising the
direct projection with a Gram–Schmidt procedure.
OMP algorithm iteratively selects the column of
A in the same way like MP. The difference is
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that b (not ri) is matched by orthogonal projection
with columns of A selected in this step and in
previous steps. Let Λk be columns of A chosen
until k steps. Orthogonal projection of b with
Λk is AΛk (A

∗
Λk

AΛk )
−1A∗

Λk
b and xk is (A∗

Λk
AΛk )

−1A∗
Λk

b,
where AΛk is the column sub-matrix of A corre-
sponding to Λk. Clearly, rk+1 is orthogonal to Λk.
Thus, the resulting Orthogonal Matching Pursuit
converges with a finite number of iterations less
than rank A.

In 2003, it was proved that assuming that
||x||0 < 0.5(1+ 1

spark(A) ), OMP (and MP) are guaran-
teed to find the sparsest solution in [8]. In 2007,
J Tropp and A Gilbert proved in [9] that assuming
that A is Gaussian, for δ ∈ (0, 0.36) and M ≥
Ck ln(N/δ), OMP can reconstruct the sparse signal
with probability exceeding 1 − 2δ. Similar result
holds when A is Bernoulli and M ≥ Ck2 ln(N/δ).

MP and OMP are fast and easy to imple-
ment. But they do not work when there are
noisy measurements. They work for Gaussian
and Bernoulli measurement matrices but it is not
known whether they succeed in the important
class of partial Fourier measurement matrices.

3. �1 Relaxation

The �1 minimisation approach considers the solu-
tion of

min || f ||1 subject to b = Af . (2)

This is a convex optimisation problem and can
be seen as a convex relaxation of (1). In the real-
valued case, (2) is casted by a linear program
and in the complex-valued case, it is casted by a
second order cone program. Of course, we hope
that the solution of (2) coincides with the solution
of (1). Here, we provide an intuitive explanation
to expect that the use of (2) will indeed promote
sparsity. Suppose dimension of signal f is 2 and
dimension of measurement vector b is 1. Except
for situations where ker A is parallel to one of faces
of the poly type {x : ||x||1 = 1}, there is a unique
solution of (2), which is sparse solution. Of course,
for p < 1, when the regulariser of (1) is changed by
||f ||p, there is also a unique sparse solution. Since
|| · ||p is neither norm nor convex for p < 1, that
problem is hard to solve.

The use of �1 minimisation appears already
in the PhD thesis of B Logan in connection
with sparse frequency estimation, where he ob-
served that �1 minimisation may recover exactly

Fig. 1. The solution of �p (quasi-)norm minimisation by one
dimensional subspace for p = 1, 2,∞ and 1

2 .

a frequency sparse signal from undersampled
data provided the sparsity is small. Donoho and
B Logan provide the earliest theoretical work on
sparse recovery using �1 minimisation. It is found
in 1990 that the idea to recover sparse Fourier
spectra from undersampled non-equispace sam-
ples. In statics, use of �1 minimisation and related
methods was popularised with the work (LASSO)
of Tibshirani. In image processing, the use of
total variation minimisation, which is connected
to �1 minimisation, appears in the work of Rudin,
Osher and Fatemi.

Many people provided the condition to re-
cover sparse solution by �1 minimisation adopting
various contents. D Donoho and X Hou provided
that condition using the content mutual coher-
ence. Mutual coherence of A assuming that the
columns of A are normalised is given by

µ(A) = max
1≤i<j≤n

|〈ai, aj〉|,

where ai is i-th column of A. They proved in [1]
that assuming that f ∈ Rn is k-sparse vector such
that Af = b and k < 1

2 (1+ 1
µ(A) ), then f is the unique

solution of (2).
We present analysis of �1 minimisation adopt-

ing the concept null space property. A matrix A
is said to satisfy the Null Space Property (NSP) of
order k with γ ∈ (0, 1) if ||ηT ||1 ≤ γ||ηTc ||1 for all set
T ⊂ {1, 2, . . . , N} with cardinality of T ≤ k, and for
all η ∈ ker A. The following sparse recovery result
of �1 minimisation is based on this concept.

Let A ∈ CM×N be a matrix and f ∈ CN and
b = Af , f ∗ be a k-sparse solution of (1). A satisfies
the null space property of order k if and only if
f ∗ is the unique solution of (2).

The NSP is actually equivalent to sparse re-
covery using �1. This fact seems to have first
appeared explicitly in [14]. The term null space
property was coined by A Cohen, W Dahmen,
and R DeVore. But, the NSP is somewhat diffi-
cult to handle directly. In 2005, E Candés and
T Tao proposed the concept restricted isometry
property. The restricted isometry constant δk of a

April 2012, Volume 2 No 22

Asia Pacific Mathematics Newsletter



3

matrix A is the smallest number satisfying

(1 − δk)||z||22 ≤ ||Az||22 ≤ (1 + δk)||z||22

for all k-sparse vector z. A matrix A is said to
satisfy the Restricted Isometry Property (RIP) of
order k with constant δk if δk ∈ (0, 1). In contrast
to the NSP, the RIP is not necessary condition
for sparse recovery by �1. Many people proposed
a sufficient condition of exact sparse �1-recovery
using the concept RIP. E Candés, M Rudelson,
T Tao and R Vershynin first note the following
fact in [3].

Assume A satisfies the RIP of order 3k and
order 4k with δ3k +3δ4k < 2. Let f ∈ CN and b = Af ,
and f ∗ be a k-sparse solution of (1). Then, f ∗ is the
unique solution of (2).

E Candés provided in [2] that sparse recovery
using �1 is guaranteed as δ2k <

√
2 − 1. The

sufficient condition was improved to δ2k <
2√
2+3

in
[16]. In 2010, S Foucart proved in [15] that every
sparse vector can be recovered by �1 if δ2k <

3
4+
√

6
.

E Candés and T Tao also proposed another suf-
ficient condition on the RIP adopting the concept
restricted orthogonality constants in [4]. The k, k′-
restricted orthogonality constants θk,k′ of a matrix
A defines the smallest number such that

|〈Ax, Ay〉| ≤ θk,k′ ||x||2||y||2

holds for all k-sparse vector x and k′-sparse vector
y with disjoint supports. They gave the sufficient
condition δk + θk,k + θk,2k < 1 on the RIP. This
condition was later improved to δ1.5k + θk,1.5k < 1
in [18].

Many people deal with RIP of Gaussian ma-
trix, Bernoulli matrix and partial Fourier matrix.
Gaussian matrix is that the entries of it are chosen
as i.i.d. (independent and identically distributed)
Gaussian random variables with expectation 0
and variance 1

M . Similarly, Bernoulli matrix is
that the entry of it takes the value 1√

M
or − 1√

M
with equal probability 1

2 . Partial Fourier matrix
is submatrix of discrete Fourier transform matrix
consisting of random rows. R Baraniuk, M Dav-
enport, R DeVore, and M Wakin proved the fol-
lowing statement.

Let A ∈ RM×N be a Gaussian or Bernoulli
matrix. For given 0 < δ < 1, there exist constants
C, C1 depending only on δ such that RIP δk of A
less than δ with probability exceeding 1 − e−C1m

provided M ≥ Ck ln( N
k ).

Therefore, k-sparse vector can be recovered
using �1 minimisation for Gaussian or Bernoulli
matrix with overwhelming probability if M ≥
Ck ln( N

k ) for some universal constant C.
E Candés and T Tao proposed that partial

Fourier matrix satisfies the RIP of order 3k and
order 4k with δ3k+3δ4k < 2 with probability at least
1−N−ct if M ≥ Ctk ln6 N for some t > 1. M Rudelson
and R Vershynin improved that condition about
M is M ≥ Ctk ln N ln (Ctk ln N)( ln k)2 for some N, t >
1, k > 2. Thus, if A is a partial Fourier matrix and
M satisfies the preceeding condition, the problem
(1) is equivalent to its convex relaxation (2) for all
k-sparse signal with high probability.

4. Application

Compressive sensing can be used in all appli-
cations where the task is the reconstruction of
a signal or an image from linear measurement.
There should be reason to believe that the signal
is sparse in a suitable basis. At first, we consider
image restoration and image inpainting. We con-
sider y = Hu + ε where y is the observed image,
u is the original image, ε is the noise, H is the
degrading operator (e.g. convolution with some
kernel). The image restoration is the process to
recover original image u using y and H. Image
inpainting is the process of recover missing pixels
of given image. For given image x, let Λ be the
index set of all available data. Since the data for
the indices in Λc is not believed, we can only
use data PΛx for the indices in Λ, where PΛ, is
called “row selctor”, is a matrix which comprises
a subset of the rows for the indices in Λ of an
identity matrix. Mixing image restoration problem
and image inpainting problem, we want to seek
original image u using the data PΛy = PΛ(Hu+ ε).
Actually, PΛ is M×N matrix for some M < N. The
sparsity prior of images in tight frame has been
used in many image restoration and inpainting
problem. Assume that ε is 0. We set the problem
following

min
u
||Wu||0 subject to PΛHu = PΛy, (3)

where W is an tight frame. Problem (3) is casted
by unconstrained problem

min
u
||Wu||0 +

1
2
||PΛHu − PΛy||22.

H Ji, Z Shen and Y Xu get good results solving
convex relaxation of this problem. Figure 2 is a
result by H Ji, Z Shen and Y Xu.
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Fig. 2. (a) Blurred image by out of focus kernel, (b) Blurred and
scratched image, (c) Reconstructed image.

Second application is Magnetic Resonance
Imaging (MRI). MRI is a medical imaging tech-
nique used in radiology to visualise detailed in-
ternal structures. In MRI, samples are collected
directly in Fourier frequency domain (k-space) of
object. The scan time in MRI is proportional to the
number of Fourier coefficients. Using compressive
sensing technique, we can reduce the number
of samples and scan time. Real MR images are
known to be sparse in discrete cosine transform
(DCT) and wavelet transform. We write this prob-
lem in the form,

min
f
||f ||0 subject to RFWf = y,

where F is Fourier transform matrix, R is ran-
dom row selector, W is a DCT matrix or wavelet
transform matrix, u = Wf is reconstruction im-
age. Several people have also observed that it
is often useful to include Total Variation |∇ · | =∑ √|∇x1 · |2 + |∇x2 · |2. Using these facts, T Gold-
stein and S Osher solve the problem,

min
u
||Wu||1 + |∇u| subject to RF f = y, (4)

where W is a haar wavelet transform matrix.
Figure 3 is a result solving the problem (4).

Further applications include analogue to dig-
ital conversion, single-pixel imaging, data com-
pression, astronomical signal, geophysical data
analysis and compressive radar imaging. The
point of compressive sensing is that even though
the amount of data is very small, we can have
most of the information contained in the object.
Thus, compressive sensing has many potential
applications in various fields.

Fig. 3. Left: original image, middle: linear reconstruction using
30% of the k-space data, right: compressive sensing reconstruc-
tion using same data of middle.
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