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Mathematical Billiards
U A Rozikov

This Letter presents some historical notes and
some very elementary notions of the mathemati-
cal theory of billiards. We give the most interest-
ing and popular applications of the theory.

1. Introduction

A billiard is a dynamical system in which a
particle alternates between motion in a straight
line and specular reflections from a boundary,
i.e. the angle of incidence equals the angle of
reflection. When the particle hits the boundary
it reflects from it without loss of speed. Billiard
dynamical systems are Hamiltonian idealisations
of the game of billiards, but where the region
contained by the boundary can have shapes other
than rectangular and even be multidimensional.
In Fig. 1 some examples of mathematical billiard
tables and trajectories are shown.

Dynamical billiards may also be studied on
non-Euclidean geometries; indeed, the very first
studies of billiards established their ergodic mo-
tion on surfaces of constant negative curvature.
The study of billiards which are kept out of a
region, rather than being kept in a region, is
known as outer billiard theory.

Many interesting problems can arise in the de-
tailed study of billiards trajectories. For example,
any smooth plane convex set has at least two
double normals, so there are always two distinct
“to and from” paths for any smoothly curved
table. Analysis of billiards path can involve so-
phisticated use of ergodic theory and dynamical
systems.

One can also consider billiard paths on polyg-
onal billiard tables. The only closed billiard path
of a single circuit in an acute triangle is the pedal
triangle. There are an infinite number of multiple-
circuit paths, but all segments are parallel to the
sides of the pedal triangle. There exists a closed
billiard path inside a cyclic quadrilateral if its
circum centre lies inside the quadrilateral.

G D Birkhoff was first to consider billiards
systematically as models for problems of classical
mechanics. Birkhoff considered billiards only in

Fig. 1. Examples of billiard tables and trajectories

smooth convex domains; he did not think about
billiards in polygons, or in non-convex domains.

Mathematical theory of chaotic billiards was
born in 1970 when Ya Sinai published his sem-
inal paper [8]. During these years it grew and
developed at a remarkable speed, and became
a well-established and an important area within
the modern theory of dynamical systems and
statistical mechanics.

Now a mathematical billiard is a popular ob-
ject of study: a MathSciNet and Google search
shows that about 2000 publications devoted to bil-
liards have appeared in mathematical and phys-
ical literatures over the years. These literatures
include research papers as well as monographs,
textbooks, and popular literature.

The book [2] is written in an accessible manner,
and touch upon a broad variety of questions.
This book can undoubtedly provide pleasurable
and instructive reading for any mathematician
or physicist interested in billiards, dynamical
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systems, ergodic theory, mechanics, geometry,
partial differential equations and mathematical
foundations of statistical mechanics. A shorter
related “popularisation” text on the same sub-
ject is [3]. For an advanced, follow-up, gradu-
ate/research level book, refer to the book [6].

In [2] the authors use a large number of very
nice and interesting problems from mathematics
and physics to illustrate the multiple facets and
applications of billiards. The main theme of the
book is the study of the behaviour of billiard
trajectories in various domains (for instance, exis-
tence of periodic trajectories), the relationships be-
tween this behaviour and the topology/geometry
of the domain, and the conclusions that can be
inferred from such results in geometry, mechanics
and statistical physics. This book also contains
some history of the game of billiards and devel-
opment of the mathematical interest in billiards,
with some unexpected problems designed to ex-
cite the interest of high school students: for in-
stance, a billiard model can be used to solve some
problems about measuring the amount of water
in vessels (which we present in the next section).
Moreover, the book [2] discusses the billiards in
a disc and in an ellipse. Also the mechanical
system “gas of absolutely rigid spheres” and its
relations with billiards are studied. These prob-
lems lead to billiards in higher-dimensional space.
Moreover, billiards in polygons and polyhedra are
studied. In many cases the study of billiards in
polygons reduces to the study of the trajectories
of a point moving on a two-dimensional surface
with two or more “holes”. Such surfaces arise in
classical mechanics when one considers problems
connected with integrable and nearly integrable
dynamical systems. The problem of the existence
of periodic trajectories in polygons and polyhedra
is studied.

An introduction to problems related with bil-
liards for a more advanced reader can be found
in Chapter 6 of [1]. The next level is represented
in the book [10]. The book [4] contains a fairly
detailed modern exposition of the theory of con-
vex billiards and twist maps. A serious but still
accessible exposition of the theory of parabolic bil-
liards in its modern state is contained in a survey
paper [7]. The volume [9] contains rich material
on hyperbolic billiards and related questions.

Notable billiard tables are:
Hadamard’s billiards. Hadamard’s billiards con-

cern the motion of a free point particle on a
surface of constant negative curvature, in partic-
ular, the simplest compact Riemann surface with
negative curvature, a surface of genus 2 (a two-
holed donut). The model is exactly solvable, and
is given by the geodesic flow on the surface.
It is the earliest example of deterministic chaos
ever studied, having been introduced by Jacques
Hadamard in 1898.

Artin’s billiards. Artin’s billiards concern the
free motion of a point particle on a surface of
constant negative curvature, in particular, the
simplest non-compact Riemann surface, a surface
with one cusp. The billiards are notable in being
exactly solvable, and being not only ergodic but
also strongly mixing. Thus they are an example
of an Anosov system. Artin billiards were first
studied by Emil Artin in 1924.

Sinai’s billiards. The table of the Sinai billiard
is a square with a disk removed from its cen-
tre; the table is flat, having no curvature. The
billiard arises from studying the behaviour of
two interacting disks bouncing inside a square,
reflecting off the boundaries of the square and
off each other. By eliminating the centre of mass
as a configuration variable, the dynamics of two
interacting disks reduces to the dynamics in the
Sinai billiard.

The billiard was introduced by Ya Sinai as
an example of an interacting Hamiltonian system
that displays physical thermodynamic properties:
it is ergodic and has a positive Lyapunov ex-
ponent. As a model of a classical gas, the Sinai
billiard is sometimes called the Lorentz gas.

Sinai’s great achievement with this model was
to show that the classical Boltzmann–Gibbs en-
semble for an ideal gas is essentially the maxi-
mally chaotic Hadamard billiards.

For more historical notes on mathematical bil-
liards see [5]. In the next sections we shall give
some elementary applications of mathematical
billiards.

2. Pouring Problems

Problem 1. There are two vessels with capacities 7
and 11 litres and there is a greater of a flank filled
with water. How to measure by these vessels exactly 1
litre of water?

Solution. In the problem the billiard table can
be considered as a parallelogram (see Fig. 2).
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Fig. 2. The trajectory separating 1 litre of water

The sides of the table must be 7 and 11.
Following the trajectory shown in Fig. 2 we can
conclude the following:

1. The ball starts its trajectory at the point (0, 0)
(the left bottom vertex). This position of the
ball means that both vessels are empty.

2. In the next position it goes to (0, 11) this
means the big vessel is full and the small
vessel is empty.

3. Then it goes to the position (7, 4) which
means that water has been poured from the
large vessel to the small one.

4. The next position (0, 4) corresponds to the act
that the small vessel has been poured out.

We should continue to follow the trajectory until
one of the vessels will contain exactly 1 litre of wa-
ter. The Fig. 2 shows that in the 8th step the large
vessel contains exactly 1 litre. Then the described
algorithm gives the solution of the problem.

Remark. If one first directs the ball to point
(7, 0) (the left top vertex) then to get 1 litre, one
has to do 25 steps. It is easy to check that by the
mathematical billiard of Fig. 2 one can measure i
litre of water for any i = 1, 2, . . . , 11. Just continue
the trajectory until to a point with a coordinate
equal to i.

Problem 2. There is a vessel with capacity 8, which
is full of water. There are two empty vessels with
capacities 3 and 5 litres. How to pour the water in two
greater vessels equally (i.e. both vessels must contain
exactly 4 litres of water)?

Solution. The table for this problem is a 3 × 5
parallelogram (see Fig. 3).

The large diagonal of the parallelogram, which
corresponds to the vessel with capacity 8, is
divided into 8 partes by the inclined straight
lines. Following the trajectory, shown in Fig. 3 we
should go until it is separated into 4 litres. The
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Fig. 3. The trajectory dividing 8 litres to two 4 litres

trajectory is

(0, 0, 8) → (0, 5, 3)→ (3, 2, 3)→ (0, 2, 6)

→ (2, 0, 6)→ (2, 5, 1)→ (3, 4, 1)→ (0, 4, 4).

This trajectory gives the algorithm of the solution.
Remark. If two smaller vessels have coprime

(relatively prime) capacities (i.e. the capacity (vol-
ume) numbers do not have a common divisor
� 1) and the biggest vessel has a capacity larger
(or equal) than the sum of the capacities of the
smaller vessels then using these three vessels one
can measure water with litres: from 1 until the
capacity of the mid vessel. For example, if there
are three vessels with capacities 12, 13 and 26
respectively. Then one can measure l litre of water
for any l ∈ {1, 2, ..., 13}.

3. Billiard in the Circle

The circle enjoys rotational symmetry, and a bil-
liard trajectory is completely determined by the
angle α made with the circle. This angle remains
the same after each reflection. Each consecutive
impact point is obtained from the previous one
by a circle rotation through angle θ = 2α.

If θ = 2πp
q , then every billiard orbit is q-periodic

and makes p turns about the circle; one says that
the rotation number of such an orbit is p

q . If θ is
not a rational multiple of π, then every orbit is
infinite. The first result on π-irrational rotations
of the circle is due to Jacobi. Denote the circle
rotation through angle θ by Tθ.

The following theorem is well known.
Theorem 1. If θ is π-irrational, then the Tθ-orbit

of every point is dense. In other words, every interval
contains points of this orbit.

Corollary. If θ is π-irrational, then the Tθ-orbit has
infinitely many points in any arc ∆ of the circle.

Let us study the sequence xn = x + nθ mod 2π
with π-irrational θ. If θ = 2πp

q , this sequence con-
sists of q elements which are distributed in the

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7
0 2 31 4 5 6 7 8 9 10 11

0 1 2 3 5
0

1

2

3

0

1

2

3

8 7 6 5 4
3

2

0

1

4

April 2012, Volume 2 No 28

Asia Pacific Mathematics Newsletter



4

circle very regularly. Should one expect a similar
regular distribution for π-irrational θ?

The adequate notion is that of equidistribution
(or uniform distribution). Given an arc I, let k(n)
be the number of terms in the sequence x0, ..., xn−1

that lie in I. The sequence is called equidistributed
on the circle if

lim
n→∞

k(n)
n
=
|I|
2π

,

for every I.
The next theorem is due to Kronecker and

Weyl; it implies Theorem 1.
Theorem 2. If θ is π-irrational, then the sequence

xn = x + nθ mod 2π is equidistributed on the circle.
Now we shall give some applications of

Theorems 1 and 2.
Problem 3. Distribution of first digits. Consider

the sequence

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...

consisting of consecutive powers of 2.
Can a power of 2 start with 2012?
Is a term in this sequence more likely to start with

3 or 4?
Solution. Let us consider the second question:

2n has the first digit k if, for some non-negative
integer q, one has

k10q ≤ 2n < (k + 1)10q.

Take logarithm base 10:

log k + q ≤ n log 2 < log (k + 1) + q. (1)

Since q is of no concern to us, let us consider
fractional parts of the numbers involved. Denote
by {x} the fractional part of the real number x.
Inequalities (1) mean that {n log 2} belongs to the
interval I = [log k, log (k + 1)). Note that log 2 is an
irrational number. Thus by Theorem 1 there is a
number n0 such that 2n0 = k.... Using Theorem 2,
we obtain the following result.

Corollary. The probability p(k) for a power of 2 to
start with digit k equals log (k + 1) − log k.

The values of these probabilities are approxi-
mately as follows:

p(1) = 0.301, p(2) = 0.176, p(3) = 0.125,

p(4) = 0.097, p(5) = 0.079, p(6) = 0.067,

p(7) = 0.058, p(8) = 0.051, p(9) = 0.046.

We see that p(k) monotonically decreases with
k; in particular, 1 is about 6 times as likely to be
the first digit as 9.
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Fig. 4. Billiard in the circle

Exercise. (a) What is the distribution of the first
digits in the sequence 2nC where C is a constant?

(b) Find the probability that the first m digits
of a power of 2 is a given combination k1k2...km.

(c) Investigate similar questions for powers of
other numbers.

(d) Prove that if p is such that p � 10q (for some
q = 1, 2, ...) then the sequence p, p2, p3, ... has a
term with the first m digits is a given combination
k1k2...km.

Remark. Surprisingly, many “real life” se-
quences enjoy a similar distribution of first digits!
This was first noted in 1881 in a 2-page article
by American astronomer S Newcomb. This article
opens as follows: “That the ten digits do not
occur with equal frequency must be evident to
anyone making much use of logarithmic tables,
and noticing how much faster the first pages wear
out than the last ones. The first significant figure
is often 1 than any other digit, and the frequency
diminishes up to 9.”

Problem 4. Is there a natural number n such that
sin n < 10−2012?

Solution. The answer is “exists”! To prove this
consider a billiard on a circle with radius 1, which
corresponds to the rotation number θ = 1 radian
(see Fig. 3). Then sequence sin 0, sin 1, sin 2, ... on
[−1, 1] corresponds to the trajectory 0, 1, 2, ... of the
billiard with the starting point 0. Since 1 radian is
π-irrational, by Theorem 1 we get the result. Note
that the question is trivial if one considers x ∈ R
instead of n = 1, 2, ....
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