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Mathematical Approaches for Analysis of
Biochemical Reaction Networks

Chang Hyeong Lee

Abstract. A biochemical reaction network is the system
in which biochemical species interact through various
reaction channels. Many chemical or biochemical sys-
tems such as signal transduction pathways, gene reg-
ulatory networks and enzymatic reaction networks are
modelled as biochemical reaction networks. To describe
the time evolution of such systems quantitatively or
qualitatively, mathematical methods and computational
tools have been used. In this paper, we introduce math-
ematical and computational methods for analysing bio-
chemical reaction networks. We review recent advances
and discuss future works in the area of biochemical
reaction networks.

1. Overview of Biochemical Reaction

Networks

In a cell of living organisms, changes in the con-

centration or molecular number of biochemical

species occur through various reaction channels,

and they affect the evolution and the mutation

of the cell. To describe such changes, researchers

have tried to find elaborate mathematical and

computational ways of modelling. A common

way of describing a chemical reaction is to use

the form ∑

i

aijSi
k
→

∑

i

bijSi ,

where Si is ith species, and aij, bij are the stoichio-

metric coefficients of ith species as the reactant

and the product of jth reaction, respectively. For

example, a reaction A+B
k
→ C means one molecule

or one mole of species A and that of B react with

the reaction rate constant k and they produce one

molecule or one mole of species C. Here the re-

action rate is determined by mass-action kinetics.

The mass-action kinetics means that the reaction

rate is proportional to concentration or molecular

number of reactant [1]. The proportional constant

for the reaction rate is assumed to be determined

by experiments. Since most of real chemical sys-

tems are complex, the graph theory is useful

for analysis of complex networks; In the graph

theory, each reaction can be regarded as a directed

arrow, and each reactant or product as a node. For

example, if we consider a reaction A+B
k
→ C, the

reactant A+B and the produce C can be regarded

as nodes, and the reaction as a directed edge.

The graph is embedded with reaction rate and

stoichiometric amount. This approach can be used

for analysis of large scale reaction networks such

as complex metabolic networks [2].

In Sec. 2, we describe ways of mathemati-

cal modelling for biochemical reaction networks.

Throughout this paper, a vector is denoted by a

boldfaced small letter.

2. Mathematical Modelling of

Biochemical Reaction Networks

2.1. Deterministic modelling

The time-dependent dynamics of reaction net-

works has been traditionally described by deter-

ministic differential equations (that is, given initial

conditions, the system dynamics is completely

determined);
dc
dt
= VR(c), (1)

where c(t) is the vector of concentration or num-

ber of molecules of species at time t, R(c) is the

vector of the reaction rate functions, and V is the

stoichiometric matrix. More precisely, Rj(c), the jth

entry of R(c), denotes the reaction rate of jth reac-

tion, (i, j) entry of V is the stoichiometric amount

of ith species changed by an occurrence of jth

reaction. For large scale biological models which

have sufficiently many species and reactions, de-

terministic description is generally accurate, and

mathematical and computational methods have

been developed for finding the solution of the

governing equation (1) for deterministic models.

The investigation on the steady-state solution

as well as the time-dependent solution is also

important in that it shows how the system will be

at the final stage and the stability of the system

at the equilibrium. Throughout the 1960’s and

1970’s, many researchers have made progresses
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reactions and the latter slow reactions. The net-

work with the fast and slow reactions is called a

two time scale reaction network. If there are more

time scale discrepancies of reactions occurring, the

network is called a multiple time scale reaction

network. In a multiple time scale reaction net-

work, fast reactions dominate the initial dynamics

and slow reactions determine the long time dy-

namics. The dynamics of the reaction networks

with fast and slow reactions is determined by

the system of differential equations with various

magnitude of kinetic parameters and many vari-

ables. Thus, it is important but difficult to analyse

or compute the dynamics of large scale reaction

networks such as metabolic networks in living

organism and signal transduction pathways. In

many cases, researchers are interested in the slow

dynamics and computations for the slow dynam-

ics need less computational cost than fast dynam-

ics. To obtain the governing equation on the slow

time scale, one can use proper approximation

methods by applying perturbation method. By the

quasi-steady-state assumption, slow dynamics is

approximated after elimination of fast dynamics

[11–14].

For analysis of stochastic models of multiple

time scale reaction networks, one has to solve

Eq. (3), but it is very difficult, if not impossible,

to find its solution analytically or computation-

ally due to high dimensionality. Alternatively, if

we use stochastic simulation algorithm (SSA) de-

scribed in Sec. 2, fast reactions occur very often in

any small time interval and randomly chosen time

step τ in SSA should be very small. This implies

that intensive and expensive computations are

required to obtain simulation results. However,

if long time dynamics is the main interest, one

can reduce computational cost by obtaining and

computing the reduced governing equation on

slow time scale. To obtain the reduced governing

equation of stochastic models on slow time scale,

one needs to approximate fast dynamics. One

method for approximating the fast dynamics is to

find the steady-state probability of fast dynamics

and use it for reducing the governing equation

on slow time scale [9, 7, 16, 17]. Generally, the

steady-state probability of fast dynamics can be

obtained by solving difficult partial differential

equation. Recently, it has been shown in [18] that

steady-state probability for a strongly connected

reaction network with deficiency 0 is given as the

product of Poisson distributions with parameters

as steady-state value of deterministic models. This

result can be used to find the quasi-steady so-

lution of general reaction networks with proper

conditions.

3.2. Stochastic models of nonlinear

reactions

Nonlinear reactions occur in most living organ-

isms and they are essential reactions for which the

number of reactant species is 2 or more. Accord-

ing to the number of reactants, nonlinear reactions

are classified as bimolecular reactions, trimolecu-

lar reactions, and so on. Since a reaction involving

more than three molecular entities is very rare and

many trimolecular reactions can be considered as

two consecutive bimolecular reactions, researches

on nonlinear reactions have been focused on bi-

molecular reactions. Indeed, many bimolecular

reactions are known to explain important bio-

logical processes. For example, the bimolecular

reaction A + B→ C describes basic reactions such

as ligand binding and enzyme-substrate binding.

The autocatalysis A + B → 2A is also a common

bimolecular reaction and it is known that it is

relevant to the mechanism of Creutzfeldt-Jakob

disease [19]. Due to high dimensionality of state

variables and nonlinearity of reactions, it is very

difficult to find the explicit form of solutions for

stochastic models of nonlinear reaction networks

except for simple cases. Since nonlinear reactions

are essential and important reactions for complex

biological and chemical reaction systems such as

enzyme reaction networks, signal transduction

pathways and gene networks, the analysis of

nonlinear reactions can give mathematical tools

and insights for analysis of stochastic models of

more complex reaction networks.

3.3. Reaction-Diffusion Network

In previous sections, we discussed the methods

for analysing the reaction networks. The assump-

tion on the reaction network theory is that the

given network is spatially well-mixed and the

spatial effect can be ignored. However, in most

of living cells, diffusive transports of molecu-

lar species occur as well as reactions and play

important roles of evolution of cell. By adding

the diffusive transports to reaction networks,

2

on the existence and uniqueness of the steady-

state solution by combining graph theory, dif-

ferential equation and chemical reaction network

theory [3–6]. Especially, Feinberg proved a very

important property about the steady-state solu-

tion [6];

Theorem 1. (Feinberg) Suppose that a reaction net-

work is strongly connected with deficiency zero. Then,

independent of the choice of reaction rate constants,

there is precisely one equilibrium value that is locally

asymptotically stable.

This theorem implies that one can determine

the existence and uniqueness of the stable steady-

state for a general class of reaction networks that

satisfy an easy-checkable topological property. It

can be usefully applied to large complex networks

whose dynamical properties at the equilibrium

are difficult to analyse.

2.2. Stochastic modelling

As researches in biological sciences have recently

been directed to small biological systems, more

elaborate ways of modelling have been required.

In a reaction network with small number of reac-

tions and molecular species, random movement

of molecules causes important effects such as mu-

tation and evolution [7]. Deterministic differential

equations cannot capture random and probabilis-

tic events, and one has to use stochastic modelling

and probabilistic methods for describing them.

In the discrete stochastic modelling, the vector

of the number of molecules of every species is

the state variable n and ith entry ni of n is the

number of molecules of ith species. If the network

has r reactions in total, the governing equation is

written as

dp(n, t)

dt
=

r∑

k=1

[ak(n − Vk)p(n − Vk, t) − ak(n)p(n, t)] .

(2)

In (2), Vk denotes kth column vector of the stoi-

chiometric matrix V and ak is so-called propensity

function that is the probability that kth reaction

occurs per unit time [8]. Generally the propensity

is a nonlinear function of n if the system has

nonlinear reactions, and it is very difficult, if not

impossible, to find the solution of (2) due to high

dimensionality of the state variables.

If the number of reactions and species is small,

given initial conditions, one can identify all pos-

sible states and transition probability between the

states, and one can construct a Markov chain

that describes the stochastic dynamics of the state

variables. The governing equation of the Markov

chain is so-called Kolmogorov equation

dp
dt
= Kp , (3)

where p is the vector of probability of all states n
and K is the transition matrix whose entries are

transition probabilities between states [9]. If the

number of possible states is small, one can find

the solution of (3) analytically or computationally.

However, real complex biological models have

large number of reactions and species, and it is

very difficult or impossible to find the solution

of (2) and (3), because the dimension of state

variable n is high or infinite. To avoid such dif-

ficulties in finding the solution of the govern-

ing equation, alternatively researchers have been

simulating stochastic trajectory of the evolution

of the state variables by using Monte-Carlo type

simulation algorithms. The well-known stochastic

algorithm is the Gillespie stochastic simulation

algorithm which is a simple but elegant Monte-

Carlo type algorithm. Here we end this section

by introducing the Gillespie algorithm [10];

Exact stochastic algorithm (Gillespie)

0. Set initial condition n(0).

1. Calculate

• the reaction rates Rℓ(n) for each ℓ

• the sum of reaction rates Rtot =
∑r
ℓ=1 Rℓ(n)

2. Generate two random numbers r1 and r2

from the uniform distribution (0, 1).

Set τ = − log (r1)
Rtot

and choose k such that∑k−1
l=1 Rℓ(n) < r2Rtot ≤

∑k
l=1 Rℓ(n)

3. Let t← t + τ

Let n← n + Vk

Go to 1.

3. Recent Research Directions

In this section we introduce research topics that

have been getting more attention recently.

3.1. Multiple time scale reaction networks

In many reaction networks in cells, while some

reactions occur quickly and they reach an equilib-

rium, others occur slowly and dominate the long

time dynamics. Generally, the former is called fast
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reactions and the latter slow reactions. The net-

work with the fast and slow reactions is called a

two time scale reaction network. If there are more

time scale discrepancies of reactions occurring, the

network is called a multiple time scale reaction

network. In a multiple time scale reaction net-

work, fast reactions dominate the initial dynamics

and slow reactions determine the long time dy-

namics. The dynamics of the reaction networks

with fast and slow reactions is determined by

the system of differential equations with various

magnitude of kinetic parameters and many vari-

ables. Thus, it is important but difficult to analyse

or compute the dynamics of large scale reaction

networks such as metabolic networks in living

organism and signal transduction pathways. In

many cases, researchers are interested in the slow

dynamics and computations for the slow dynam-

ics need less computational cost than fast dynam-

ics. To obtain the governing equation on the slow

time scale, one can use proper approximation

methods by applying perturbation method. By the

quasi-steady-state assumption, slow dynamics is

approximated after elimination of fast dynamics

[11–14].

For analysis of stochastic models of multiple

time scale reaction networks, one has to solve

Eq. (3), but it is very difficult, if not impossible,

to find its solution analytically or computation-

ally due to high dimensionality. Alternatively, if

we use stochastic simulation algorithm (SSA) de-

scribed in Sec. 2, fast reactions occur very often in

any small time interval and randomly chosen time

step τ in SSA should be very small. This implies

that intensive and expensive computations are

required to obtain simulation results. However,

if long time dynamics is the main interest, one

can reduce computational cost by obtaining and

computing the reduced governing equation on

slow time scale. To obtain the reduced governing

equation of stochastic models on slow time scale,

one needs to approximate fast dynamics. One

method for approximating the fast dynamics is to

find the steady-state probability of fast dynamics

and use it for reducing the governing equation

on slow time scale [9, 7, 16, 17]. Generally, the

steady-state probability of fast dynamics can be

obtained by solving difficult partial differential

equation. Recently, it has been shown in [18] that

steady-state probability for a strongly connected

reaction network with deficiency 0 is given as the

product of Poisson distributions with parameters

as steady-state value of deterministic models. This

result can be used to find the quasi-steady so-

lution of general reaction networks with proper

conditions.

3.2. Stochastic models of nonlinear

reactions

Nonlinear reactions occur in most living organ-

isms and they are essential reactions for which the

number of reactant species is 2 or more. Accord-

ing to the number of reactants, nonlinear reactions

are classified as bimolecular reactions, trimolecu-

lar reactions, and so on. Since a reaction involving

more than three molecular entities is very rare and

many trimolecular reactions can be considered as

two consecutive bimolecular reactions, researches

on nonlinear reactions have been focused on bi-

molecular reactions. Indeed, many bimolecular

reactions are known to explain important bio-

logical processes. For example, the bimolecular

reaction A + B→ C describes basic reactions such

as ligand binding and enzyme-substrate binding.

The autocatalysis A + B → 2A is also a common

bimolecular reaction and it is known that it is

relevant to the mechanism of Creutzfeldt-Jakob

disease [19]. Due to high dimensionality of state

variables and nonlinearity of reactions, it is very

difficult to find the explicit form of solutions for

stochastic models of nonlinear reaction networks

except for simple cases. Since nonlinear reactions

are essential and important reactions for complex

biological and chemical reaction systems such as

enzyme reaction networks, signal transduction

pathways and gene networks, the analysis of

nonlinear reactions can give mathematical tools

and insights for analysis of stochastic models of

more complex reaction networks.

3.3. Reaction-Diffusion Network

In previous sections, we discussed the methods

for analysing the reaction networks. The assump-

tion on the reaction network theory is that the

given network is spatially well-mixed and the

spatial effect can be ignored. However, in most

of living cells, diffusive transports of molecu-

lar species occur as well as reactions and play

important roles of evolution of cell. By adding

the diffusive transports to reaction networks,
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researchers constructed the reaction-diffusion net-

work model. In the 1950’s, Turing recognised the

importance of the diffusive transport, when he

studied the dynamics of pattern formation [20].

He considered a chemical system of two species,

an activator and an inhibitor, and he showed that

the system is stable to any small perturbations if

diffusion is not present, but it is unstable when

diffusion is present. This mechanism is called

Turing instability, which causes the creation of

spatial patterns. After his work, there have been

many studies about the reaction-diffusion models

of pattern formation. If the network has large-

scale, reaction-diffusion partial differential equa-

tions have been used to analysing its dynamics

and many computational methods have been de-

veloped for solving the equations. However, in

case that the network is sufficiently small and

random collision of molecules affects its dynam-

ics, one has to model the network stochastically.

One common way of modelling reaction-diffusion

networks stochastically is by construction of lo-

calised reaction compartments. In the stochastic

compartment model, reactions between species

occur in each compartment and diffusive trans-

port of molecules of species occurs between adja-

cent compartments. A detailed description of the

stochastic compartment model is as follows; We

first suppose that the system has s species which

interact through r reactions in each of m identical

compartments and perform diffusive transport

between adjacent compartments. To derive the

governing equation, we denote the number of

molecules of ith species in jth compartment by

N
j

i
. Since the diffusive transport between adjacent

compartments can be considered as a first-order

reaction, the diffusion of ith species from jth to kth

compartment is modelled as a first-order reaction

with the reaction rate d
jk

i
. The rate d

jk

i
is the jump

rate of ith species from jth to kth compartment

and it can be computed as

d
jk

i
=

Di

h2
,

where Di is the bulk diffusion constant for ith

species and h is the uniform mesh size [21]. Let

N = (N1, N2, . . . , Nm)T denote the vector of num-

bers of molecules of species in the network. Here

Ni
= (Ni

1
, . . . , Ni

s) denotes a vector of numbers of

molecules of species in ith compartment. We let

ẽk and ek be an m × 1 and an s × 1 unit vector,

respectively, whose kth entry is 1 and 0 otherwise,

and we define N(t) = n. Using these notation,

we can write the master equation for reaction-

diffusion system by

dp(n)

dt
=

r∑

l=1

m∑

k=1

ak
l (nk
− Vl)p(n − ẽk ⊗ Vl) − ak

l (nk)p(n)

+

m∑

k=1

m∑

j=1

s∑

i=1

d
jk

i
(n

j

i
+ 1)p(n + ẽj ⊗ ei − ẽk ⊗ ei)

− d
jk

i
n

j

i
p(n),

where ak
l
( · ) is the propensity of lth reaction in kth

compartment, and ⊗ denotes the tensor product.

Due to high dimensionality of variable n and com-

plexity of network structure of reaction-diffusion

system, it is very difficult, if not impossible, to

find the solution of (4) analytically and also it

needs heavy computations with high performance

computing machines to find computational solu-

tions. Another issue is that the basis for the choice

of compartment size h has not been clarified; Sup-

pose a reaction-diffusion system contains species

with diffusion rates of different time scales. If

the compartment size is chosen for fast-diffusing

species, the spatially homogeneous assumption

for each compartment may not be true for slowly-

diffusing species. If one chooses the compartment

size for slowly-diffusing species, any stochastic

simulation algorithm will be computationally in-

efficient [22].
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