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Stochastic Games and Dynamic
Programming

Henk Tijms

1. Introduction

Stochastic games are fun and instructive for teach-

ing purposes on one hand and involve chal-

lenging research questions on the other hand.

A basic tool for analysing stochastic games that

involve a sequence of actions to be taken is the

method of dynamic programming. This recursive

approach is also known as the method of back-

ward induction and is a computational tool for

optimisation problems in which a sequence of

interrelated decisions must be made in order to

maximise reward or minimise cost. As a simple

but illustrative example, consider the game of

rolling a fair die at most five times. You may stop

whenever you want and receive as a reward the

number shown on the die at the time you stop.

What is the stopping rule that maximises your

expected payoff in this optimal stopping game?

To answer this question, the idea is to consider

a sequence of nested problems having planning

horizons of increasing length. For the one-roll

problem in which only one roll is permitted, the

solution is trivial. You stop after the first roll and

your expected payoff is 1× 1
6+2× 1

6+· · ·+6× 1
6 = 3.5.

In the two-roll problem, you stop after the first

roll if the outcome of this roll is larger than the

expected value 3.5 of the amount you get if you

do not stop but continue with what is an one-

roll game. Hence, in the two-roll problem, you

stop if the first roll gives a 4, 5, or 6; otherwise,

you continue. The expected payoff in the two-roll

game is 1
6 × 4 + 1

6 × 5 + 1
6 × 6 + 3

6 × 3.5 = 4.25.

Next consider the three-roll problem. If the first

roll in the three-roll problem gives an outcome

larger than 4.25, then you stop; otherwise, you

do not stop and continue with what is a two-roll

game. Hence the expected payoff in the three-roll

problem is 1
6 × 5+ 1

6 × 6+ 4
6 × 4.25 = 4.67. Knowing

this expected payoff, we can solve the four-roll

problem. In the four-roll problem you stop after

the first roll if this roll gives a 5 or 6; otherwise,

you continue. The expected payoff in the four-roll

problem is 1
6 ×5+ 1

6 ×6+ 4
6 ×4.6667 = 4.944. Finally,

we find the optimal strategy for the original five-

roll problem. In this problem you stop after the

first roll if this roll gives a 5 or 6; otherwise,

you continue. The maximal expected payoff in the

original problem is 1
6 ×5+ 1

6 ×6+ 4
6 ×4.944 = 5.129.

The above method of backward induction de-

composes the original problem in a series of

nested problems having planning horizons of in-

creasing length. Each nested problem is simple to

solve and the solutions of the nested problems are

linked by a recursion. The above argument can be

formalised as follows. For k = 1, 2, . . . , 5, define

fk(i) = the maximal expected payoff if still k rolls
are permitted and the outcome of the last
roll is i,

where i = 0, 1, . . . , 6. This function is called the

value-function. It enables us to compute the de-

sired maximal expected payoff f5(0) and the op-

timal strategy for achieving this expected payoff

in the five-roll problem. This is done by applying

the recursive equation

fk(i) = max

i,
1

6

6�

j=1

fk−1(j)



for 0 ≤ i ≤ 6, where k runs from 1 to 5. The

recursion is initialised with f0(j) = j for all j.

The method of backward induction is very

versatile, and does not require that the outcomes

of the successive experiment are independent of

each other. As an example, take the following

game. You take cards, one at a time, from a

thoroughly shuffled deck of 26 red and 26 black

cards. You may stop whenever you want and

your payoff is the number of red cards drawn

minus the number of black cards drawn. What

is the maximal expected value of the payoff? The

approach is again to decompose the original prob-

lem in a sequence of smaller nested problems.

Define the value function E(r, b) as the maximal

expected payoff you can still achieve if r red
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cards and b black cards are left in the deck.

Using conditional expectations, we can establish

the recursive scheme

E(r, b)=max
[
b−r,

r

r+b
E(r−1, b)+

b

r+b
E(r, b−1)

]
.

The desired maximal expected E(26, 26) is ob-

tained by “backward” calculations starting with

E(r, 0) = 0 and E(0, b) = b .

The maximal expected payoff is E(26, 26) =

2.6245. The optimal decisions in the various states

can be summarised through threshold values βk:

stop if the number of red cards drawn minus the

number of black cards drawn is βk or more after

the kth draw; otherwise, continue. The numerical

values of the βk are β1 = 2, β2 = 3, β3 = 4, β4 = 5,

β5 = 6, β6 = 5, β7 = 6, β8 = 7, β9 = 6, β2m = 5 and

β2m+1 = 4 for 5 ≤ m ≤ 11, β2m = 3 and β2m+1 = 4 for

12 ≤ m ≤ 16, β2m = 3 and β2m+1 = 2 for 17 ≤ m ≤ 21,

β44 = 1, β45 = 2, β46 = 1, β47 = 2, β48 = 1, β49 = 0,

β50 = 1, β51 = 0. In the next sections we discuss

several other problems that can be tackled by the

method of backward induction.

2. The Game of Pig

The game of Pig involves two players who in turn

roll a die. The object of the game is to be the first

player to reach 100 points. In each turn, a player

repeatedly rolls a die until either a 1 is rolled or

the player holds (voluntarily stops). If the player

rolls a 1, the player gets a score of zero for that

turn and it becomes the opponent’s turn. If the

player holds after having rolled a number other

than 1, the total number of points rolled in that

turn is added to the player’s total score and it

becomes the opponent’s turn. At any time during

a player’s turn, the player must choose between

the two decisions “roll” or “hold”. It is assumed

that a toss of a fair coin decides which player

begins in the game of Pig. Then, under optimal

play of both players, each player has a probability

of 50% of being the ultimate winner. But how to

calculate the optimal decision rule? The dynamic

programming approach proceeds as follows. State

s is defined by s = ((i, k), j), where (i, k) indicates

that the player whose turn it is has a current score

of i and has k points accumulated so far in the

current turn and j indicates that the opponent’s

current score is j. Define the value function P(s)

by

P(s) = the probability that the player rolling the

die will win the game given that state s

is the present state,

where P(s) is taken to be equal to 1 for those

s = ((i, k), j) with i + k ≥ 100 and j < 100.

To write down the optimality equations, we use

the simple observation that the probability of a

player winning after rolling a 1 or holding is

one minus the probability that the other player

beginning with the next turn will win. Thus, for

state s = ((i, k), j) with k = 0,

P((i, 0), j) =
1

6
{1 − P((j, 0), i)}+

6∑

r=2

1

6
P((i, r), j) .

For state s = ((i, k), j) with k ≥ 1 and i + k, j < 100,

P((i, k), j) = min
[
1 − P((j, 0), i + k) ,

1

6
{1 − P((j, 0), i)}+

6∑

r=2

1

6
P((i, k + r), j)

]
,

where the first expression in the right side of the

last equation corresponds to the decision “hold”

and the second expression corresponds to the

decision “roll”. Using the method of successive

substitution, these optimality equations can be

numerically solved, yielding the optimal decision

to take in any state s = ((i, k), j). Starting with

P0(s) = 0 for all s, the functions P1(s), P2(s), . . . are

recursively computed from

Pn((i, 0), j) =
1

6
{1 − Pn−1((j, 0), i)}+

6∑

r=2

1

6
Pn−1((i, r), j)

and

Pn((i, k), j) = min
[
1 − Pn((j, 0), i + k) ,

1

6
{1 − Pn((j, 0), i)}

+

6∑

r=2

1

6
Pn((i, k + r), j)

]
.

Then, limn→∞ Pn(s) = P(s) for all s. The computa-

tion of an optimal decision rule is a nontrivial job

and has been done in Neller and Presser [4]. These

authors have a nice website on computational

aspects of the game of Pig and its variants. A

variant of the game of Pig is as follows. Each turn,

the player repeatedly rolls two dice until either

the roll shows a 1 or the player holds. In the event

of a roll showing a single 1, the player loses only

the turn total, but in the event of a roll showing a
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double 1 both the turn total and the current score

are lost.

The game of Hog (fast Pig) is a variation of

the game of Pig in which players have only one

roll per turn but may roll as many dice as desired.

The number of dice a player chooses to roll can

vary from turn to turn. The player’s score for

a turn is zero if one or more of the dice come

up with the face value 1. Otherwise, the sum of

the face values showing on the dice is added

to the player’s score. The players alternate in

taking turns rolling the dice. The first player to

reach 100 points is the winner. The game of Hog

can also be analysed by the method of dynamic

programming. The modification of the optimality

equations are rather straightforward and will not

be discussed here.

A challenging variant of the game of Hog

arises when the two players have to take simulta-

neously a decision in each round and only partial

information is available.a Think of the following

television game. Two contestants each sit behind

a panel with a battery of buttons numbered as

1, 2, . . . , D, say D = 10. In each stage of the

game, both contestants must simultaneously press

one of the buttons, where they cannot observe

each other’s decision. The number pressed on

the button is the number of dice the contestant

must throw. The score of the contestant’s throw

is added to his/her total, provided that none

of the dice showed the outcome 1; otherwise

no points are added to the current total of the

contestant. In case both contestants reach the goal

of 100 points in the same move, the winner is

the contestant who has the largest total. In the

event of a tie, the winner is determined by a toss

of a fair coin. At each stage of the game both

contestants have full information about his/her

own current total and the current total of the

opponent. What does the optimal strategy look

like? The computation and the structure of an

optimal strategy is far more complicated than

in the problems discussed before. The optimal

rules for the decision problems considered before

are deterministic, but the optimal strategy will

involve randomised actions for the problem of

the television game show. In zero-sum games,

randomisation is a key ingredient of the optimal

strategy. The problem of the television-show game

aOther interesting decision problems with partial information
are discussed in a nice paper by Hill [3].

is discussed in detail in Tijms and Van der Wal [7]

and still has open questions.

Remark. An interesting heuristic can be given for

the single-player version of the game of Pig in

which the player’s goal is to reach 100 points in a

minimal expected number of turns. The heuristic

is to stop the turn when the turn total is 20 or

more points with the stipulation that you also

hold when the turn total is l or more if your

current score lacks l points with 1 ≤ l ≤ 19. The

rationale behind this hold-at-20 rule: if you put

20 points at stake, your expected loss of 1
6 × 20

points equals your expected gain of 5
6 × 4 points.

Under the hold-at-20 rule the expected value of

the number of turns needed to reach 100 points

is 12.637, while the minimal expected number of

turns is 12.545. The structure of the decision rule

leading to the minimal expected number of turns

has been studied in Haigh and Roters [2]. The

expected value of the number of turns for the

heuristic can be computed by using a Markov

chain model (see Tijms [6]) and the minimal

expected number of turns can be computed by

dynamic programming. Let state (i, 0) mean that

a turn has just been completed and the player’s

current score is i, and let state (i, k) mean that the

turn total is k with k ≥ 2 and the player’s current

score is i. Defining V(s) as the minimal expected

number of additional turns to reach 100 points

from state s, we have the following optimality

equations. For state s = (i, 0) with i < 100,

V((i, 0)) = 1 +
1

6
V((i, 0)) +

6∑

r=2

1

6
V((i, r))

and, for state s = (i, k) with k ≥ 2 and i + k < 100,

V((i, k)) = min
[
V((i + k, 0)) ,

1

6
V((i, 0)) +

6∑

r=2

1

6
V((i, k + r))

]
.

For the single-player version of the variant of the

game of Pig with two dice, an excellent heuristic

is to stop the turn in state (i, k) if

10

36
× k +

1

36
(i + k) ≥

25

36
× 8

and to continue otherwise. Under this heuristic

the expected number of turns to reach 100 points

is 17.164, while the minimal expected number of

turns is 16.923. For the single-player version of

the game of Hog a good heuristic is to use the

five-dice rule prescribing to roll five dice in each
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turn with the stipulation that trunc(l/2) dice rolled

when still l points with 1 ≤ l ≤ 9 are required

(the expected score in a single turn is maximal

when rolling five dice). Under the five-dice rule

the expected number of turns to reach 100 points

is 13.623, while the minimal expected number of

turns is 13.039.

3. A Coin-tossing Game

The following game is very simple but still has

open questions. Toss a fair coin repeatedly and

stop whenever you want. The payoff is the pro-

portion of heads accrued at the time you stop.

What is the maximal expected payoff and what

is an optimal stopping rule? It is known that an

optimal stopping rule exists and is characterized

by a sequence of integers β1, β2, . . .. You stop after

the nth toss when the number of heads minus

the number of tails is larger than or equal to βn.

Obviously, β1 = 1. It has also been proved that

lim
n→∞
βn/
√

n = 0.83992 . . . .

However, the computation of the exact values

of the maximal expected payoff and the critical

numbers βn is still an open problem. The difficulty

is that backward induction will not work for the

optimality equation for the coin-tossing problem.

Let state (i, n) mean that n tosses have done so far

and have resulted in i heads, and define V(i, n)

as the maximal expected payoff obtainable from

state (i, n). Then, the optimality equation is given

by

V(i, n) = max
[

i

n
,

1

2
V(i + 1, n + 1) +

1

2
V(i, n + 1)

]
.

Backwards induction will not work here since

there is no a priori end to the sequence and, hence,

no future time to calculate backwards from. Nev-

ertheless, numerical results can be obtained by

putting an upper bound on the number of tosses

allowed. Suppose that no more than N tosses

can be done. For a fixed value of N, define the

value-function fk(i) as the maximal expected pay-

off obtainable if still k tosses are allowed and i

heads have obtained so far. Then, the following

recursive equation can be given

fk(i) = max
[

i

N − k
,

1

2
fk−1(i + 1) +

1

2
fk−1(i)

]

for 0 ≤ i ≤ N−k, where k runs from 1 to N. Starting

with f0(i) = i
N , the functions f1(i), . . . , fN(i) can

be successively computed. The maximal expected

payoff V(0, 0) and the critical numbers βn can be

approximated by doing the recursive computa-

tions for a sufficiently large value for the length N

of the planning horizon. It is interesting to see the

numerical values of fN(0) for several values of N.

The restricted maximal expected payoff fN(0) has

the values 0.7679, 0.7780, 0.7839, 0.7912, 0.79206,

0.79263, 0.79289, and 0.79294 for N = 25, 50,

100, 1,000, 2,500, 10,000, 100,000, and 1,000,000.

For large N, the value of fN(0) approximates the

desired value of the maximal expected payoff

V(0, 0). It is remarkable how slowly fN(0) con-

verges as N gets larger. Experimental mathematics

done by Wiseman [8] provides strong evidence

that

V(0, 0) = 0.79295350 . . . .

In Hägström and Wästlund [1] very sharp upper

and lower bounds on V(0, 0) are established and

the bounds

0.79295301 < V(0, 0) < 0.79295560

are in agreement with the conjecture of Wise-

man. A remarkable finding is that the heuristic

stopping rule prescribing to stop as soon as the

proportion of heads exceeds 0.5 has an expected

payoff of π/4 = 0.7853982, being very close the

maximal expected payoff V(0, 0). On the basis of

extensive numerical computations, Medina and

Zeilberger [4] conjecture the true values of βn for

1 ≤ n ≤ 185 (the computer analysis in Hägström

and Wästlund [1] confirm the proposed values of

the optimal stopping levels βn except for β127). In

addition to β1 = 1, we mention the values β2 = 2,

β3 = 3, β4 = 2, β5 = 3, β8 = 2, β10 = 4, β15 = 3,

β25 = 5, β50 = 6, β75 = 7, β99 = 9, and β100 = 8. In

particular, stopping is not optimal if you have 2

heads and 1 tails after 3 tosses, but it is optimal if

you have 5 heads and 3 tails after 8 tosses. Coin-

tossing problems are always full of surprises.
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Interactions of Statistics and Probability
with Algebra and Analysis

Odile Pons

Abstract. This note presents some historical examples of
the link between the main areas of mathematics and the
statistical theory. The research in statistics has an impact
on algebra and analysis as much as the innovations due
to the probability theory, while algebra and analysis
improve the statistical methods.

1. Introduction

The interactions between all domains of the math-

ematics with the theories of probability and statis-

tics can be found at the origin of new results in

probability and statistics as well as in algebra or

analysis. Tables and charts for the quantiles of

free tests were established at the beginning of the

20th century using approximations of integrals by

sums and other classical computational methods.

This has been a very active domain for several

decades in all countries where the statistics was

developed, sometimes errors due to the round-off

have been corrected by applications of the proba-

bility theory. The second step after building new

statistical estimators and tests is their comparison

[2].

The asymptotic behaviour of the maximum

likelihood tests provides here an example where

optimisation methods, probability theory and al-

gebra are applied to the theory of the statistical

tests.

2. Variance of Random Variables

In a probability space (Ω,F , P), let X be a real

variable with a density fθ indexed by a real param-

eter set Θ and such that for every x, fθ(x) belongs

to C2(Θ). The mean µθ =
�
R

xfθ(x) dx of X has the

derivative

µ
′

θ
=

�
xḟθ(x) dx =

�

R

(x − µθ)ḟθ(x) dx ,

where ḟθ denotes the first derivative of fθ, and

its variance is σ2
θ
=

�
R

(x − µθ)
2 dFθ(x). By the

Cauchy–Schwarz inequality, we get the Cramer–

Rao bound

{µ
′

θ
}
2
≤ σ

2
θ

�

R

f−2
θ

ḟ 2
θ

dFθ .

With a random vector X, the inequality applies

to µT
θ

a for every real a. With a vector parameter

the integral in the bound is a matrix and the

inequality applies with the trace of the matrix.

A random vector X has a symmetric vari-

ance matrix and it is singular if X has linearly

dependent components. Let I =
�

I11 I12

I21 I22

�
be a

block decomposition of a non-singular symmetric

matrix, with non-singular square sub-matrices I11

and I22. Using the notations

A = I11 − I12I−1
22 I21 ,

B = I21I−1
11 ,

C = I22 − I21I−1
11 I12

and the relationship AI−1
11 I12 = I12I−1

22 C, one can

write a block decomposition of the inverse of I

in the two following forms

I−1
=


I−1
11 + BTC−1B −I−1

11 I12C−1

−C−1I21I−1
11 C−1



and

I−1
=


A−1

−A−1I12I−1
22

−C−1I21I−1
11

C−1

 .

By the uniqueness of the inverse, it follows that

A−1
= I−1

11
+ BTC−1B which is equivalent to

I11(I11 − I12I−1
22 I21)−1I11

= I11 + I12(I22 − I21I−1
11 I12)−1I21.

3. Log-likelihood Ratio Test

Let X1, . . . , Xn be a sample with distribution func-

tion F belonging to a class G of distribution func-

tions. Let F = {Fθ, θ ∈ Θ} be a parametric subset of

G indexed by a bounded open Θ set of Rd1 , d1 ≥ 1.

Goodness of fit test statistics for the hypothesis

H0 : F belongs to F include the likelihood ratio

test for the parametric class of functions F and

nonparametric tests. The general alternative of the

test is K : F belongs to G \ F where G can be

parametric or not.

Assuming that F has a uniformly continuous

density f , the likelihood ratio test for the density
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