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Interactions of Statistics and
Probability with Algebra and Analysis

Odile Pons

Abstract. This note presents some historical examples of
the link between the main areas of mathematics and the
statistical theory. The research in statistics has an impact
on algebra and analysis as much as the innovations due
to the probability theory, while algebra and analysis
improve the statistical methods.

1. Introduction

The interactions between all domains of the math-
ematics with the theories of probability and statis-
tics can be found at the origin of new results in
probability and statistics as well as in algebra or
analysis. Tables and charts for the quantiles of
free tests were established at the beginning of the
20th century using approximations of integrals by
sums and other classical computational methods.
This has been a very active domain for several
decades in all countries where the statistics was
developed, sometimes errors due to the round-off
have been corrected by applications of the proba-
bility theory. The second step after building new
statistical estimators and tests is their comparison
[2].

The asymptotic behaviour of the maximum
likelihood tests provides here an example where
optimisation methods, probability theory and al-
gebra are applied to the theory of the statistical
tests.

2. Variance of Random Variables

In a probability space (2,7 ,P), let X be a real
variable with a density f, indexed by a real param-
eter set ® and such that for every x, fy(x) belongs
to C2(®). The mean uy = fofg(x) dx of X has the
derivative

o= [ e = [ G-,

where fg denotes the first derivative of f;, and
its variance is o = [  (x — ug)?dFy(x). By the
Cauchy-Schwarz inequality, we get the Cramer—
Rao bound

P <ol f fo*f7 dFy.
R

With a random vector X, the inequality applies
to pla for every real a. With a vector parameter
the integral in the bound is a matrix and the
inequality applies with the trace of the matrix.

A random vector X has a symmetric vari-
ance matrix and it is singular if X has linearly
dependent components. Let I = (E gi) be a
block decomposition of a non-singular symmetric
matrix, with non-singular square sub-matrices I
and I. Using the notations

A =Ty - Il I,
B=Inly,
C=In-InljIn
and the relationship AIl‘llllz = 11212‘21C, one can

write a block decomposition of the inverse of I
in the two following forms

1_1 B (11_11 +BTC 1B —11_11112(:_1)

—C_llzlll_ll ct

and B B
L A —AT )
—C_llzlll_ll c1 '

By the uniqueness of the inverse, it follows that
A™' =I;! + BIC™'B which is equivalent to

LI — ol 1) ' In

= Iy + hia(Ip — I I o) .

3. Log-likelihood Ratio Test

Let Xy, ..
tion F belonging to a class G of distribution func-

., X, be a sample with distribution func-

tions. Let 7 = {Fy, 6 € ®} be a parametric subset of
G indexed by a bounded open @ set of R%, d; > 1.
Goodness of fit test statistics for the hypothesis
Hy : F belongs to ¥ include the likelihood ratio
test for the parametric class of functions ¥ and
nonparametric tests. The general alternative of the
test is K : F belongs to G \ ¥ where G can be
parametric or not.

Assuming that F has a uniformly continuous
density f, the likelihood ratio test for the density
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of Hy against an alternative K is defined by max-
imising the density ratio of the sample under K
and Hj

T,=2log —— ™ .
S T § P {6:0)

Let H = {F,,y € I'} be a parametric class of distri-

bution functions of G including # and indexed by
a dp-dimensional parameter y belonging to a set
I including the parameters of ©. The alternative
is then K : F belongs to H \ ¥ and the statistic is
written

T, =2 ) {logfy, (X) - logf; (Xi)},
i=1

where Y, = argmax,er 2., logf,(X;) is the estima-
tor of the parameter in I and 6, is the estimator
of the parameter in ®. Under Hy, there exists a
parameter value 6y belonging to the interior of
® such that X has the density fy = fy,- Under
the assumptions that every F = Fy of ¥ has a
twice continuously differentiable density fy with
respect to 6 and that the Fisher information matrix
Iy = —Eolf; (X)fo(X)}? is finite and non-singular,
Eologfy(X) is locally concave in a neighbourhood
of 6y and 6, is a consistent estimator of g, under
Hy. At 6y, let

U, =n2 Z %(Xi)/

i=1,..n

fo fun)
=n! 0 (X)) — |1 .
Ii=n 12{ X ( fo) (Xo},
be the first two derivatives of the log-likelihood
under Hy, n2(6, — 6) = I;'U, + 0p(1). Since H
includes ¥, the true parameter value yp in I'
under Hj can be written as a vector with com-
ponents including 6 and other parameters with
value zero, yo = (6,07)T. Let U, and I, be the
first two derivatives of the log-likelihood under
distributions of H, their d; first components are
respectively U, and I,.

Assuming that, under the alternative, the
Fisher information matricesTy =-E\{fy 1(X)jﬂy(X)}2
are finite and non-singular, 1, converges in prob-
ability to I, uniformly in ®. The estimator of vy is
consistent for every parameter of I' and 1 (3, —
yo) = I'U, + 0p(1), when X has the distribution
function F,.

Under the condition that I,,(6) and Tn(y) have
an inverse for every 6 in ® and y in T, the
expansion of the log-likelihood ratio statistic relies
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on the inversion by blocks of the matrix I,. Let
d = dimI'-dim ® and let g be the projection from
a set I' into O, such that dimI" > dim ®.

Proposition 1. Under Hy, T, = YT Yu+0p(1) where Y,
is a d-dimensional vector of independent and centred
variables with variance 1 and it converges weakly to
a X§ variable. Let (Ky,)n>1 be a sequence of local alter-
natives indexed by a sequence of parameters (¥u)ns1
in sets (I'n)n>1 for which there exists 0 in © and v,
in K such that v, = lim,,_,« nz (yn —y). Under K, the
limiting distribution of the statistic T, is Xﬁ—y[ﬁ(y)yg.

Proof. From the consistency of the estimator un-
der Hy, expanding 10gf§n —logfy, = logi{l +f9‘01(fgn -
fa,)} as n tends to infinity, we obtain

n

D {logf;, — logfa,}(Xi)

i=1
=n2(8, - 6)) U,

- ;(’9\11 ~60) Lu(6, — ) + 0,(1)

1, ¢
= Eu,{l,,lu,, +0y(1)

and a similar expansion is written for logf;, —
logfy, = log{1 + £, !(f, — f,,)}- The test statistic is
then written

T, = U'T,'U, — UL, U, +0,(1) .

Let U, = (U7, aZZ)T, its variance matrix I, is split
into blocks according to the components of the
parameter inside or outside ©. It follows that

Tn = (L’lZlI;l un - anZ)TAgl(Igl un - a712) + Op(]-)

where the variance of ;11 u, - ﬁnz is A, hence
T has an asymptotically free distribution and T,
converges weakly to a y3 variable.

Let y = (7,07)T, under the sequence of local
alternatives (K;),>1 the sequence of parameters of
(Ki)n=1 is such that there exists a limit vy, for the
sequence (n% (¥n=7))ux1. Since f, = f5, an expansion
of T, under K, is obtained from the expansions
of log{fs,f; '} = loglfy, f; 1) +log(1+ £, 1(f5, - f5,)} and
log{fgwfe‘l} = log{1+f;'(f; —fo)} as n tends to infinity.
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The statistic is now written

Ty = 1 — ) Ta(vn) G = v) = ¥e L (¥n)va
= (62— )"1,(0) (6. — )} + 0,(1)
= Loa (), U = Upa(y))”
A )T (v U = Ui ()
= Yo La(yn)ya + 0p(1) .

The variance of L1 (yn);'U, — U,n(y,) under the
sequence of local alternatives is A,(y,) and vy,
tends to y, therefore the asymptotic distribution
of T, under the sequence of local alternatives is

X5 =7 1) o

The critical value of the test of level « is ¢,
such that a = P(y3 > ¢,) and its asymptotic power
under the sequence of local alternatives (K;)ns1
for which there exist 6 in ® and 7y, in K such that

Yo = limyse 12 (ys —y) is
By(@) = Px2 > co + ¥l T(y)ya).

Therefore, inf, ,,cr B,,5, > @, so the test is unbiased.

Let us consider a parameter space defined by
a constraint 6"x < 1, x in R, which split ® into
disjoint sub-spaces, ®; = {§ € @ : 6Tx < 1} and
©® \ O;. The estimators of the parameters in 0,
6 e 0
against the alternative K; : § € ® \ ®; are built

and the tests for the null hypothesis Hy :

according to the same arguments with indicators
of the parameter sets. In the estimation procedure,
the log-likelihood is replaced by the Lagrangian

16 = Y log (%)~ A@x 1),
i=1

where 1 = 0 if 6 belongs to ®;. Under Hy, the
constraint implies 0 > (6, — 6)Tx + (6"x — 1) hence
UIT;'x < 0 and the estimator of 6 has the expan-
sion nz(6, — 6)T = Un T <o) + 0p(1). Under
the alternative, the constraint is ULI'x > 0 and
n2 (0, =0)" = ULL; "1y 1,0 +0p(1). Let Z = UL, 2,
the test statistic for Hy against K; is

x<0}

T,=2'7z1 . -7Z'z1

(ZIT, 2 x>1} {(ZT1,2 x<1}

+ op(l)

and Z, converges to a normal variable Z in R4
as n tends to infinity. The limiting distribution
under Hy of the log-likelihood ratio tests with the
constraint of ©; is then a difference of truncated
X; variables

T= zT21{ .

=771 ..
ZTI 2 x>1) {

ZTI 2x<1}

Other constraints modify the limiting distribu-
tion of the LR test statistic. Let (py, ..., pk) belong
to [0,1] and such that Zle pr =1, and let f; be den-
sities of the variable X conditionally on K classes,
belonging to the same set of densities. Tests about
the number of components in a mixture model
with a density ¢ = Y, pifi is non standard since
the information matrix is singular. The expansions
of the estimators and of the LR statistic do not
apply without more conditions. A condition of
separation of the parameters of the densities of the
mixture was used by Gosh and Sen [1], Chernoff
(1995) proposed a reparametrisation of the likeli-
hood ratio, Pons [4] adopted the same approach.

4. Tests and Large Deviations

In a probability space (2,7 ,P), let X be a real
variable with distribution function F. The Laplace
transform of a variable X is

Lx(t):fRet"dF(x).

On (Q,7,P), let (Xi)i=1,.,» be a sequence of inde-
pendent and identically distributed real random
variables with mean zero, having a finite Laplace
transform Ly, and let S, = Y\, X;. By Chernov’s
large deviations theorem, for every a > 0 and for
every n > 0, log P(S, > a) = infyo{nlog Lx(t) — at}
and it is strictly negative. A d-dimensional vari-
able X has the same property, for every a in RY.

The score variable U,(6)) of the LR test for
Hy : F = Fy against the alternative K : F # F
converges weakly to a centred Gaussian variable
Uy with variance Iy = I(6p), under the hypothesis.
For distributions with a scalar parameter, the
level of the test with rejection domain D,(e¢) =
(1, Un(@0)] > e} s @ = PoN(O, D] > ¢,) = 274,
by Chernov’s theorem, and the critical value is
deduced. If d > 1, let || - |4 be the norm of
I(R?), a score test has a rejection domain D, (@) =
{IL,, : U, (60)ll2,4 > co} and it is asymptoticlally equiv-
alent to the LR test. The x? variable ||I, LI0||§’ ; has
the Laplace transform L(t) = (1 - 2t)‘%, t in ]0, %[,
and info<5{log L() — c2t} = infoor<5{—4 log (1 -2) -
2t} = dlogc+ 3(d—dlogd - ?) := k, < 0. Applying
Chernov’s theorem to the asymptotic level of the
test, it follows that @ = ¢*. Its asymptotic power
against the sequence of alternatives of Proposition
1is

_1 ~ 1
By (@) = P{”IO Uo = I"2(y)Yalloa > cal-
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Consider the score test of Hy : F € ¥ against
the alternative K : F ¢ ¥, with a parametric class
of distributions ¥ = {Fy, 6 € ®}. The score process
(Un(6))sco of the LR test converges weakly to a
centred Gaussian process with variance I(f) and
covariance function E[{f, 1 fg]fg_z 15, 1(X)]. A score test

has a rejection domain
-1
Du(a) = {supIf,* OUn(O)ll2.4 > cat
€l

with ¢, such that sup,.q Po{Dx(@)} converges to «,
as n tends to infinity, applying Chernov’s the-
orem. Its asymptotic power is the limit of the
sequence f,(@) = infrgr Pr{D,()} and it is larger
than a.

Boundaries of the tail probabilities of empirical
processes obtained by large deviations also apply
to the asymptotic behaviour of estimators [5].
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