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Interactions of Statistics and Probability
with Algebra and Analysis

Odile Pons

Abstract. This note presents some historical examples of
the link between the main areas of mathematics and the
statistical theory. The research in statistics has an impact
on algebra and analysis as much as the innovations due
to the probability theory, while algebra and analysis
improve the statistical methods.

1. Introduction

The interactions between all domains of the math-

ematics with the theories of probability and statis-

tics can be found at the origin of new results in

probability and statistics as well as in algebra or

analysis. Tables and charts for the quantiles of

free tests were established at the beginning of the

20th century using approximations of integrals by

sums and other classical computational methods.

This has been a very active domain for several

decades in all countries where the statistics was

developed, sometimes errors due to the round-off

have been corrected by applications of the proba-

bility theory. The second step after building new

statistical estimators and tests is their comparison

[2].

The asymptotic behaviour of the maximum

likelihood tests provides here an example where

optimisation methods, probability theory and al-

gebra are applied to the theory of the statistical

tests.

2. Variance of Random Variables

In a probability space (Ω,F , P), let X be a real

variable with a density fθ indexed by a real param-

eter set Θ and such that for every x, fθ(x) belongs

to C2(Θ). The mean µθ =
�
R

xfθ(x) dx of X has the

derivative

µ
′

θ
=

�
xḟθ(x) dx =

�

R

(x − µθ)ḟθ(x) dx ,

where ḟθ denotes the first derivative of fθ, and

its variance is σ2
θ
=

�
R

(x − µθ)
2 dFθ(x). By the

Cauchy–Schwarz inequality, we get the Cramer–

Rao bound

{µ
′

θ
}
2
≤ σ

2
θ

�

R

f−2
θ

ḟ 2
θ

dFθ .

With a random vector X, the inequality applies

to µT
θ

a for every real a. With a vector parameter

the integral in the bound is a matrix and the

inequality applies with the trace of the matrix.

A random vector X has a symmetric vari-

ance matrix and it is singular if X has linearly

dependent components. Let I =
�

I11 I12

I21 I22

�
be a

block decomposition of a non-singular symmetric

matrix, with non-singular square sub-matrices I11

and I22. Using the notations

A = I11 − I12I−1
22 I21 ,

B = I21I−1
11 ,

C = I22 − I21I−1
11 I12

and the relationship AI−1
11 I12 = I12I−1

22 C, one can

write a block decomposition of the inverse of I

in the two following forms

I−1
=


I−1
11 + BTC−1B −I−1

11 I12C−1

−C−1I21I−1
11 C−1



and

I−1
=


A−1

−A−1I12I−1
22

−C−1I21I−1
11

C−1

 .

By the uniqueness of the inverse, it follows that

A−1
= I−1

11
+ BTC−1B which is equivalent to

I11(I11 − I12I−1
22 I21)−1I11

= I11 + I12(I22 − I21I−1
11 I12)−1I21.

3. Log-likelihood Ratio Test

Let X1, . . . , Xn be a sample with distribution func-

tion F belonging to a class G of distribution func-

tions. Let F = {Fθ, θ ∈ Θ} be a parametric subset of

G indexed by a bounded open Θ set of Rd1 , d1 ≥ 1.

Goodness of fit test statistics for the hypothesis

H0 : F belongs to F include the likelihood ratio

test for the parametric class of functions F and

nonparametric tests. The general alternative of the

test is K : F belongs to G \ F where G can be

parametric or not.

Assuming that F has a uniformly continuous

density f , the likelihood ratio test for the density
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The statistic is now written

Tn = n{(̂γn − γn)T̃In(γn) (̂γn − γn) − γT
a Ĩn(γn)γa

− (̂θn − θ)
TIn(θ) (̂θn − θ)} + op(1)

= {In21(γn)I−1
n Un − Ũn2(γn)}T

A−1
n (γn){In21(γn)I−1

n Un − Ũn2(γn)}

− γ
T
a Ĩn(γn)γa + op(1) .

The variance of In21(γn)I−1
n Un − Ũn2(γn) under the

sequence of local alternatives is An(γn) and γn

tends to γ, therefore the asymptotic distribution

of Tn under the sequence of local alternatives is

χ
2
d
− γ

T
a Ĩ(γ)γa. �

The critical value of the test of level α is cα
such that α = P(χ2

d
> cα) and its asymptotic power

under the sequence of local alternatives (Kn)n≥1

for which there exist θ in Θ and γa in K such that

γa = limn→∞ n
1
2 (γn − γ) is

βγ,γa
(α) = P{χ2

d > cα + γ
T
a Ĩ(γ)γa} .

Therefore, infγ,γA∈Γ
βγ,γa

> α, so the test is unbiased.

Let us consider a parameter space defined by

a constraint θTx ≤ 1, x in Rd1 , which split Θ into

disjoint sub-spaces, Θ1 = {θ ∈ Θ : θTx ≤ 1} and

Θ \ Θ1. The estimators of the parameters in Θ1

and the tests for the null hypothesis H0 : θ ∈ Θ1

against the alternative K1 : θ ∈ Θ \ Θ1 are built

according to the same arguments with indicators

of the parameter sets. In the estimation procedure,

the log-likelihood is replaced by the Lagrangian

ln(θ) =
n∑

i=1

log fθ(Xi) − λ(θ
Tx − 1) ,

where λ = 0 if θ belongs to Θ1. Under H0, the

constraint implies 0 ≥ (̂θn − θ)
Tx + (θTx − 1) hence

UT
n I−1

n x ≤ 0 and the estimator of θ has the expan-

sion n
1
2 (̂θn − θ)

T
= UT

n I−1
n 1
{UT

n I−1
n x≤0} + op(1). Under

the alternative, the constraint is UT
n I−1

n x > 0 and

n
1
2 (̂θn−θ)

T
= UT

n I−1
n 1
{UT

n I−1
n x<0}+op(1). Let ZT

n = UT
n I
−

1
2

n ,

the test statistic for H0 against K1 is

Tn = ZT
nZn1

{ZT
n I
−

1
2

n x>1}
− ZT

nZn1
{ZT

n I
−

1
2

n x≤1}
+ op(1)

and Zn converges to a normal variable Z in Rd

as n tends to infinity. The limiting distribution

under H0 of the log-likelihood ratio tests with the

constraint of Θ1 is then a difference of truncated

χ
2
d

variables

T = ZTZ1
{ZTI−

1
2 x>1}

− ZTZ1
{ZTI−

1
2 x≤1}

.

Other constraints modify the limiting distribu-

tion of the LR test statistic. Let (p1, . . . , pK) belong

to [0, 1] and such that
∑K

k=1 pk = 1, and let fk be den-

sities of the variable X conditionally on K classes,

belonging to the same set of densities. Tests about

the number of components in a mixture model

with a density g =
∑K

k=0 pkfk is non standard since

the information matrix is singular. The expansions

of the estimators and of the LR statistic do not

apply without more conditions. A condition of

separation of the parameters of the densities of the

mixture was used by Gosh and Sen [1], Chernoff

(1995) proposed a reparametrisation of the likeli-

hood ratio, Pons [4] adopted the same approach.

4. Tests and Large Deviations

In a probability space (Ω,F , P), let X be a real

variable with distribution function F. The Laplace

transform of a variable X is

LX(t) =

∫

R

etx dF(x) .

On (Ω,F , P), let (Xi)i=1,...,n be a sequence of inde-

pendent and identically distributed real random

variables with mean zero, having a finite Laplace

transform LX, and let Sn =
∑n

i=1 Xi. By Chernov’s

large deviations theorem, for every a > 0 and for

every n > 0, log P(Sn > a) = inft>0{n log LX(t) − at}

and it is strictly negative. A d-dimensional vari-

able X has the same property, for every a in Rd.

The score variable Un(θ0) of the LR test for

H0 : F = F0 against the alternative K : F � F0

converges weakly to a centred Gaussian variable

U0 with variance I0 = I(θ0), under the hypothesis.

For distributions with a scalar parameter, the

level of the test with rejection domain Dn(α) =

{|I
−

1
2

n Un(θ0)| > cα} is α = P0(|N(0, 1)| > cα) = 2e−
1
2 c2
α ,

by Chernov’s theorem, and the critical value is

deduced. If d > 1, let � · �2,d be the norm of

l2(Rd), a score test has a rejection domain Dn(α) =

{�I
−

1
2

n Un(θ0)�2,d > cα} and it is asymptotically equiv-

alent to the LR test. The χ2 variable �I
−

1
2

0 U0�
2
2,d

has

the Laplace transform L(t) = (1 − 2t)−
d
2 , t in ]0, 1

2 [,
and inf0<t<.5{log L(t)− c2

αt} = inf0<t<.5{−
d
2 log (1−2t)−

c2
α
t} = d log c+ 1

2 (d− d log d− c2) := kα < 0. Applying

Chernov’s theorem to the asymptotic level of the

test, it follows that α = ekα . Its asymptotic power

against the sequence of alternatives of Proposition

1 is

βγ,γa
(α) = P{�I

−
1
2

0 U0 − Ĩ−
1
2 (γ)γa�2,d > cα} .

2

of H0 against an alternative K is defined by max-

imising the density ratio of the sample under K

and H0

Tn = 2 log
supf :F∈G

�
i=1,...,n f (Xi)

supf :F∈F

�
i=1,...,n f (Xi)

.

Let H = {Fγ, γ ∈ Γ} be a parametric class of distri-

bution functions of G including F and indexed by

a d2-dimensional parameter γ belonging to a set

Γ including the parameters of Θ. The alternative

is then K : F belongs to H \ F and the statistic is

written

Tn = 2
n�

i=1

{log f�γn
(Xi) − log f�θn (Xi)} ,

where �γn = arg maxγ∈Γ
�n

i=1 log fγ(Xi) is the estima-

tor of the parameter in Γ and �θn is the estimator

of the parameter in Θ. Under H0, there exists a

parameter value θ0 belonging to the interior of

Θ such that X has the density f0 = fθ0 . Under

the assumptions that every F = Fθ of F has a

twice continuously differentiable density fθ with

respect to θ and that the Fisher information matrix

Iθ = −Eθ{f
−1
θ

(X)ḟθ(X)}2 is finite and non-singular,

E0 log fθ(X) is locally concave in a neighbourhood

of θ0 and �θn is a consistent estimator of θ0 under

H0. At θ0, let

Un = n−
1
2

�

i=1,...,n

ḟθ0
f0

(Xi) ,

−In = n−1
�

i=1,...,n


f̈θ0
f0

(Xi) −


ḟθ0
f0


2

(Xi)

 ,

be the first two derivatives of the log-likelihood

under H0, n
1
2 (�θn − θ0) = I−1

n Un + op(1). Since H

includes F , the true parameter value γ0 in Γ

under H0 can be written as a vector with com-

ponents including θ0 and other parameters with

value zero, γ0 = (θT0 , 0T)T. Let �Un and �In be the

first two derivatives of the log-likelihood under

distributions of H , their d1 first components are

respectively Un and In.

Assuming that, under the alternative, the

Fisher information matrices�Iγ = −Eγ{f
−1
0 (X)ḟγ(X)}2

are finite and non-singular, �In converges in prob-

ability to I, uniformly in Θ. The estimator of γ is

consistent for every parameter of Γ and n
1
2 (�γn −

γ0) = �I−1
n
�Un + op(1), when X has the distribution

function Fγ.

Under the condition that In(θ) and �In(γ) have

an inverse for every θ in Θ and γ in Γ, the

expansion of the log-likelihood ratio statistic relies

on the inversion by blocks of the matrix �In. Let

d = dimΓ−dimΘ and let πΘ be the projection from

a set Γ into Θ, such that dimΓ > dimΘ.

Proposition 1. Under H0, Tn = YT
n Yn+op(1) where Yn

is a d-dimensional vector of independent and centred

variables with variance 1 and it converges weakly to

a χ2
d

variable. Let (Kn)n≥1 be a sequence of local alter-

natives indexed by a sequence of parameters (γn)n≥1

in sets (Γn)n≥1 for which there exists θ in Θ and γa

in K such that γa = limn→∞ n
1
2 (γn − γ). Under Kn, the

limiting distribution of the statistic Tn is χ2
d
−γ

T
a
�I(γ)γa.

Proof. From the consistency of the estimator un-

der H0, expanding log f�θn − log fθ0 = log{1 + f−1
θ0

(f�θn −

fθ0 )} as n tends to infinity, we obtain

n�

i=1

{log f�θn − log fθ0}(Xi)

= n
1
2 (�θn − θ0)TUn

−
n

2
(�θn − θ0)TIn(�θn − θ0) + op(1)

=
1

2
UT

n I−1
n Un + op(1)

and a similar expansion is written for log f�γn
−

log fγ0
= log{1 + f−1

γ0
(f�γn
− fγ0

)}. The test statistic is

then written

Tn =
�UT

n
�I−1

n
�Un −UT

n I−1
n Un + op(1) .

Let �Un = (UT
n , �UT

n2)T, its variance matrix�In is split

into blocks according to the components of the

parameter inside or outside Θ. It follows that

Tn = (In21I−1
n Un −

�Un2)TA−1
n (I−1

n Un −
�Un2) + op(1)

where the variance of In21I−1
n Un −

�Un2 is An hence

T has an asymptotically free distribution and Tn

converges weakly to a χ2
d

variable.

Let γ = (θT, 0T)T, under the sequence of local

alternatives (Kn)n≥1 the sequence of parameters of

(Kn)n≥1 is such that there exists a limit γa for the

sequence (n
1
2 (γn−γ))n≥1. Since fγ = fθ, an expansion

of Tn under Kn is obtained from the expansions

of log{f�γn
f−1
θ
} = log{fγn

f−1
γ
}+ log{1+ f−1

γn
(f�γn
− fγn

)} and

log{f�θn f−1
θ
} = log{1+f−1

θ
(f�θn−fθ)} as n tends to infinity.
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The statistic is now written

Tn = n{(̂γn − γn)T̃In(γn) (̂γn − γn) − γT
a Ĩn(γn)γa

− (̂θn − θ)
TIn(θ) (̂θn − θ)} + op(1)

= {In21(γn)I−1
n Un − Ũn2(γn)}T

A−1
n (γn){In21(γn)I−1

n Un − Ũn2(γn)}

− γ
T
a Ĩn(γn)γa + op(1) .

The variance of In21(γn)I−1
n Un − Ũn2(γn) under the

sequence of local alternatives is An(γn) and γn

tends to γ, therefore the asymptotic distribution

of Tn under the sequence of local alternatives is

χ
2
d
− γ

T
a Ĩ(γ)γa. �

The critical value of the test of level α is cα
such that α = P(χ2

d
> cα) and its asymptotic power

under the sequence of local alternatives (Kn)n≥1

for which there exist θ in Θ and γa in K such that

γa = limn→∞ n
1
2 (γn − γ) is

βγ,γa
(α) = P{χ2

d > cα + γ
T
a Ĩ(γ)γa} .

Therefore, infγ,γA∈Γ
βγ,γa

> α, so the test is unbiased.

Let us consider a parameter space defined by

a constraint θTx ≤ 1, x in Rd1 , which split Θ into

disjoint sub-spaces, Θ1 = {θ ∈ Θ : θTx ≤ 1} and

Θ \ Θ1. The estimators of the parameters in Θ1

and the tests for the null hypothesis H0 : θ ∈ Θ1

against the alternative K1 : θ ∈ Θ \ Θ1 are built

according to the same arguments with indicators

of the parameter sets. In the estimation procedure,

the log-likelihood is replaced by the Lagrangian

ln(θ) =
n∑

i=1

log fθ(Xi) − λ(θ
Tx − 1) ,

where λ = 0 if θ belongs to Θ1. Under H0, the

constraint implies 0 ≥ (̂θn − θ)
Tx + (θTx − 1) hence

UT
n I−1

n x ≤ 0 and the estimator of θ has the expan-

sion n
1
2 (̂θn − θ)

T
= UT

n I−1
n 1
{UT

n I−1
n x≤0} + op(1). Under

the alternative, the constraint is UT
n I−1

n x > 0 and

n
1
2 (̂θn−θ)

T
= UT

n I−1
n 1
{UT

n I−1
n x<0}+op(1). Let ZT

n = UT
n I
−

1
2

n ,

the test statistic for H0 against K1 is

Tn = ZT
nZn1

{ZT
n I
−

1
2

n x>1}
− ZT

nZn1
{ZT

n I
−

1
2

n x≤1}
+ op(1)

and Zn converges to a normal variable Z in Rd

as n tends to infinity. The limiting distribution

under H0 of the log-likelihood ratio tests with the

constraint of Θ1 is then a difference of truncated

χ
2
d

variables

T = ZTZ1
{ZTI−

1
2 x>1}

− ZTZ1
{ZTI−

1
2 x≤1}

.

Other constraints modify the limiting distribu-

tion of the LR test statistic. Let (p1, . . . , pK) belong

to [0, 1] and such that
∑K

k=1 pk = 1, and let fk be den-

sities of the variable X conditionally on K classes,

belonging to the same set of densities. Tests about

the number of components in a mixture model

with a density g =
∑K

k=0 pkfk is non standard since

the information matrix is singular. The expansions

of the estimators and of the LR statistic do not

apply without more conditions. A condition of

separation of the parameters of the densities of the

mixture was used by Gosh and Sen [1], Chernoff

(1995) proposed a reparametrisation of the likeli-

hood ratio, Pons [4] adopted the same approach.

4. Tests and Large Deviations

In a probability space (Ω,F , P), let X be a real

variable with distribution function F. The Laplace

transform of a variable X is

LX(t) =

∫

R

etx dF(x) .

On (Ω,F , P), let (Xi)i=1,...,n be a sequence of inde-

pendent and identically distributed real random

variables with mean zero, having a finite Laplace

transform LX, and let Sn =
∑n

i=1 Xi. By Chernov’s

large deviations theorem, for every a > 0 and for

every n > 0, log P(Sn > a) = inft>0{n log LX(t) − at}

and it is strictly negative. A d-dimensional vari-

able X has the same property, for every a in Rd.

The score variable Un(θ0) of the LR test for

H0 : F = F0 against the alternative K : F � F0

converges weakly to a centred Gaussian variable

U0 with variance I0 = I(θ0), under the hypothesis.

For distributions with a scalar parameter, the

level of the test with rejection domain Dn(α) =

{|I
−

1
2

n Un(θ0)| > cα} is α = P0(|N(0, 1)| > cα) = 2e−
1
2 c2
α ,

by Chernov’s theorem, and the critical value is

deduced. If d > 1, let � · �2,d be the norm of

l2(Rd), a score test has a rejection domain Dn(α) =

{�I
−

1
2

n Un(θ0)�2,d > cα} and it is asymptotically equiv-

alent to the LR test. The χ2 variable �I
−

1
2

0 U0�
2
2,d

has

the Laplace transform L(t) = (1 − 2t)−
d
2 , t in ]0, 1

2 [,
and inf0<t<.5{log L(t)− c2

αt} = inf0<t<.5{−
d
2 log (1−2t)−

c2
α
t} = d log c+ 1

2 (d− d log d− c2) := kα < 0. Applying

Chernov’s theorem to the asymptotic level of the

test, it follows that α = ekα . Its asymptotic power

against the sequence of alternatives of Proposition

1 is

βγ,γa
(α) = P{�I

−
1
2

0 U0 − Ĩ−
1
2 (γ)γa�2,d > cα} .
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Consider the score test of H0 : F ∈ F against

the alternative K : F � F , with a parametric class

of distributions F = {Fθ, θ ∈ Θ}. The score process

(Un(θ))θ∈Θ of the LR test converges weakly to a

centred Gaussian process with variance I(θ) and

covariance function E[{f −1
θ1

ḟθ1 f−1
θ2

ḟθ2 }(X)]. A score test

has a rejection domain

Dn(α) = {sup
θ∈Θ

�I
−

1
2

n (θ)Un(θ)�2,d > cα}

with cα such that sup
θ∈Θ

Pθ{Dn(α)} converges to α,

as n tends to infinity, applying Chernov’s the-

orem. Its asymptotic power is the limit of the

sequence βn(α) = infF�F PF{Dn(α)} and it is larger

than α.

Boundaries of the tail probabilities of empirical

processes obtained by large deviations also apply

to the asymptotic behaviour of estimators [5].
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