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Randomness in Number Theory∗

Peter Sarnak

Number Theory Probability Theory

Whole numbers Random objects

Prime numbers Points in space

Arithmetic operations Geometries

Diophantine equations Matrices

... Polynomials

... Walks

... Groups

...
...

Automorphic forms Percolation theory

Number theoretic dichotomy: Either there is a

rigid structure (e.g. a simple closed formula) in

a given problem, or the answer is difficult to

determine and in that case it is random according

to some probabilistic law.

• The probabilistic law can be quite unex-

pected and telling.

• Establishing the law can be very difficult

and is often the central issue.

The randomness principle has implications in

both directions.

⇒ Understanding and proving the law al-

lows for a complete understanding of a

phenomenon.

⇐ The fact that a very explicit arithmetical

problem behaves randomly is of great prac-

tical value.

Examples:

• To produce pseudo-random numbers,

• Construction of optimally efficient error cor-

recting codes and communication networks,

• Efficient derandomisation of probabilistic al-

gorithms “expanders”.

Illustrate the Dichotomy with examples.

0. Is π = 3.14159265358979323 . . . a Normal

Number?

π is far from rational;

∗Slides from the Mahler Lectures 2011

Mahler (1953):

∣∣∣∣∣∣ π −
p

q

∣∣∣∣∣∣ > q−42, p, q � 2 .

1. In Diophantine Equations

A bold conjecture: Bombieri–Lang takes the di-

chotomy much further. If V is a system of polyno-

mial equations with rational number coefficients

(“a smooth projective variety defined over Q”),

then all but finitely many rational solutions arise

from ways that we know how to make them

(parametric, special subvarieties, group laws . . .)

2. A Classical Diophantine Equations

Sums of three squares: for n > 0, solve

x2
+ y2
+ z2
= n ; x, y, z ∈ Z .

If P = (x, y, z), d2(P, 0) = n.

Points P, P′ and P′′ at distance
√

n from the origin D.

E(n) := sets of solutions.

Examples: for n = 5, the P’s are

( ± 2,±1, 0), ( ± 1,±2, 0), ( ± 2, 0,±1),

( ± 1, 0,±2), (0,±2,±1), (0,±1,±2),

N(n) := #E(n), the cardinality of E(n), that is the

number of solutions, so N(5) = 24.

N(n) is not a random function of n but it is difficult

to understand.
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Projections of lattice points coming from the prime n = 1299709 (center), versus random points (left)
and rigid points (right). The plot displays an area containing about 120 points.

If random, this sum of
p − 1 complex numbers
of modulus 1 should
cancel to about size

√
p.

Fact:

|S(1, p)| ≤ 2
√

p . [15]

Gauss/Legendre (1800): N(n) > 0 iff n � 4a(8b+7).

(This is a beautiful example of a local to global

principle.)

N(n) ≈
√

n (if not zero).

Project these points onto the unit sphere

P = (x, y, z) �→
1
√

n
(x, y, z) ∈ S2 .

We have no obvious formula for locating the

P’s and hence according to the dichotomy they

should behave randomly. It is found that they

behave like N randomly placed points on S2.

• One can prove some of these random

features.

• It is only in dimension 3 that the Ê(n)’s

are random. For dimensions 4 and higher,

the distances between points in Ê(n) have

“explicit” high multiplicities. For 2 dimen-

sions there aren’t enough points on a circle

— not random.

3. Examples from Arithmetic

p is a (large) prime number. Do arithmetic in

the integers keeping only the remainders when

divided by p. This makes {0, 1, . . . , p− 1} := Fp into

a finite field.

Now consider x = 1, 2, 3, . . . , p − 1 advancing

linearly. How do x̄ := x−1 (mod p) arrange

themselves? Except for the first few, there is no

obvious rule, so perhaps randomly?

Experiments show that this is so. For example,

statistically, one finds that x �→ x̄ behaves like a

random involution of {1, 2, . . . , p − 1}.

One of the many measures of the randomness is

the sum

S(1, p) =

p−1∑

x=1

e2πi(x+x̄)/p.

Follows from the “Riemann hypothesis for

curves over finite fields”. The fact that arithmetic

operations such as x �→ x̄ (mod p) are random is at

the source of many pseudo-random constructions.

Examples:

Ramanujan Graphs: These are explicit and

optimally highly connected sparse graphs

(optimal expanders).

n = 80, deg = 3

Largest known planar cubic Ramanujan graphs

Arithmetic construction:

q ≡ 1 (mod 20) prime

1 ≤ i ≤ q − 1 ; i2 ≡ −1 (mod q)

1 ≤ β ≤ q − 1 ; β
2
≡ 5 (mod q)

S the six 2 × 2 matrices with entries in Fq and of

determinant 1.

S=

{
1

β

[
1±2i 0

0 1∓2i

]
,

1

β

[
1 ±2
∓2 1

]
,

1

β

[
1 ±2
±2i 1

]}
.

Let Vq be the graph whose vertices are the

matrices A ∈ SL2(Fq), |Vq| ∼ q3, and edges run

between g and sg with s ∈ S and g ∈ Vq.

Vq is optimally highly connected, 6 regular

graph on |SL2(Fq)| vertices, an optimal expander.

Here artihmetic mimics or even betters random.
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4. The Möbius Function

n ≥ 1, n = pe1

1
pe2

2 · · ·P
ek

k

µ(n) =

{
0 if ej ≥ 2 for some j,

( − 1)k otherwise.

n 1 2 3 4 5 6 7 8 9 10

µ(n) 1 −1 −1 0 −1 1 −1 0 0 1

Graph of values of µ(n).

ζ(s) have real part 1/2.
Write ρ = 1/2+ iγ for the
zeros.

γ1 = 14.21 . . . Riemann

and the first 1010 ze-
ros are known to satisfy
RH.

0 < γ1 ≤ γ2 ≤ γ3 . . .

Is µ(n) random? What laws does it follow. There

is some structure, e.g. from the squares

µ(4k) = 0 etc.

One can capture the precise structure/

randomness of µ(n) via dynamical systems,

entropy, . . . .

The simplest question is to think of a random

walk on Z moving to the right by 1 if µ(n) = 1, to

the left if µ(n) = −1, and sticking if µ(n) = 0. After

N steps?

A(N) =
1

N

∑

n≤N

µ(n), N ≤ 100 000; see graph below

∣∣∣∣∣∣∣
∑

n≤N

µ(n)

∣∣∣∣∣∣∣≪ε N1/2+ε, ε > 0?

This is equivalent to the Riemann hypothesis! So

in this case establishing randomness is one of the

central unsolved problems in mathematics.

One can show that for any A fixed and N

large, ∣∣∣∣∣∣∣
∑

n≤N

µ(n)

∣∣∣∣∣∣∣
≤

N

( log N)A
.

Graph of the average of µ(n) up to N.

5. The Riemann Zeta Function

ζ(s) =
∞∑

n=1

n−s, s > 1

it is a complex analytic function of s (all s).

1

ζ(s)
=

∞∑

n=1

µ(n)

ns
.

Riemann Hypothesis: All the nontrivial zeros ρ of

Are the γj’s random?

Scale first so as to form meaningful local statistics

γ̂j :=
γj log γj

2π
, these have unit mean spacing .

γ̂j, j = 1, 2, . . . do not behave like random num-

bers but rather like eigenvalues of a random

(large) hermitian matrix! GUE (Gaussian Unitary

Ensemble).

Nearest neighbour spacings among 70 million
zeroes beyond the 1020-th zero of zeta, versus µ1

(GUE), see [12].

A(N)
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6. Modular Forms

Modular (or automorphic) forms are a goldmine

and are at the centre of modern number theory.

I would like to see an article “The Unreason-

able Effectiveness of Modular Forms in Number

Theory”. Why are they so? I think it is because

they violate our basic principle.

• They have many rigid and many random

features.

• They cannot be written down explicitly (in

general).

• But one can calculate things associated with

them to the bitter end, sometimes enough to

extract precious information.

Hejhal–Rackner nodal lines for λ = 1/4 + R2, R = 125.313840

Hejhal–Rackner nodal domains for λ = 1/4 + R2, R = 125.313840

Nodal domains for a random spherical harmonic of degree 40
[A Barnett].

On the left is the nodal set {φ = 0} of a highly

excited modular form for SL2(Z).

Δφ + λφ = 0, λ =
1

4
+ R2 .

φ(z) is SL2(Z) periodic. Is the zero set behaving

randomly? How many components does it have?

The physicists Bogomolny and Schmit (2002) sug-

gest that for random waves

N(φn) = The number of components ∼ cn

c = 3
√

3−5
π

, comes from an exactly solvable critical

percolation model!

• The modular forms apparently obey this

rule. Some of this but much less can be

proven.

• These nodel lines behave like random curves

of degree
√

n.

A random real plane curve of degree 50 [M. Nastasescu].

7. Randomness and Algebra?

How many ovals does a random real plane pro-

jective curve of degree t have?

Harnack: The number of ovals ≤ (t−1)(t−2)
2 + 1
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Answer: the random curve is about 4% Harnack,

# of ovals ∼ c′t2, c′ = 0.0182. . . (Nazarov–Sodin,

Nastasescu).
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