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Self-Avoiding Walks and
Polygons — An Overview

Anthony J Guttmann

Abstract. We give a rather personal review of the prob-
lem of self-avoiding walks and polygons. After defining
the problem, and outlining what is known rigorously,
and what is merely conjectured, we highlight the major
outstanding problems in the field. We then give several
applications in which the author has been involved.
These include a study of surface adsorption of poly-
mers, counting possible paths in a telecommunication
network and the modelling of biological experiments
on polymers, in which a polymer is pulled from a wall.
The purpose of the review is to show that the problem
is not only of intrinsic mathematical interest, but also
has many interesting and useful applications.

1. Introduction

The problem of self-avoiding walks is one of
deceptive simplicity of definition, hiding malevo-
lent difficulty of solution. The problem was intro-
duced by two theoretical chemists, Orr [31] and
Flory [13], as a model of a polymer in dilute solu-
tion. It soon became an interesting combinatorial
model to mathematicians, and a canonical model
of phase transitions, of interest to mathematical
physicists. It is also a simple model of a non-
Markovian process. Attempts to count the num-
ber of SAW have led to the development of new
algorithms, with widespread applicability, while
many more applications were discovered. These
include application to the design of telephone
networks, the folding and knotting of biological
molecules, and a variety of chemical phenom-
ena. Attempts at a solution have driven several
mathematical advances, including developments
in stochastic differential equations and probability
theory.

Nearly 70 years after the model was proposed,
we have a huge amount of numerical information,
a substantial amount of exact information — that
is to say, results that are universally believed, but
remain unproved — and a very small body of
rigorous results. In contrast, some other canonical
models of phase transitions, such as the Ising
model, the Potts model and percolation have ei-
ther been solved (the Ising model) or much has
been rigorously proved. In this short article I
will outline the development of the subject, give
some applications, and show that we appear to
be on the verge of some major breakthroughs,
which will result in proofs of much of the exact,

Fig. 1. A self-avoiding walk on the square lattice

Fig. 2. A typical two-dimensional SAW of 225 steps on the
square lattice [courtesy of Nathan Clisby]

but unproved, information that currently exists.
Unfortunately all the exact and conjectural infor-
mation we have applies only to the model on a
two-dimensional lattice. In the case of three di-
mensions, we only have numerical results. Except
where otherwise stated, this article will discuss
the two-dimensional situation.

2. What is Known and What is Not

2.1. Self-avoiding walks

A self-avoiding walk (SAW) of length n on a
periodic graph or lattice L is a sequence of distinct
vertices w0, w1, . . . , wn in L such that each vertex
is a nearest neighbour of its predecessor. In Fig. 1
a short SAW on the square lattice is shown, while
in Fig. 2 a rather long walk of 225 steps is shown
(generated by a Monte Carlo algorithm [8, 9]).

2.1.1. How many self-avoiding walks are there?
Two obvious questions one might ask are (i)
how many SAWs are there of length n, (typically
defined up to translations) denoted cn, and (ii)
how big is a typical n-step SAW? Indeed, how
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might we measure size? A third important, but
less obvious question, asks “what is the scaling
limit of SAWs?”

Frequently one rather considers the associated
generating function

C(x) =
∑
n≥0

cnxn .

To see the difficulty of this problem, the reader
is invited to try and calculate the first few terms
cn on Z2. We take c0 to be 1, then c1 = 4 as a
one step walk can be in any of 4 directions. Then
c2 = 12, c3 = 36 and c4 = 100. It is at the stage
of 4-step SAWs that the self-avoiding constraint
first manifests itself, and the problem becomes
increasingly difficult thereafter.

As we prove below, cn grows exponentially.
Accordingly, an enormous amount of effort has
been expended over the last 50 years in develop-
ing efficient methods for counting SAW. For the
square lattice, Jensen [20] has extended the known
series to 79 step walks, for which he finds c79 =

10194710293557466193787900071923676. Methods
for calculating these astonishing numbers are
quite complicated (see [14, Chap. 7]), but the
best current algorithm still involves a counting
problem of exponential complexity, of about 1.3n

(while a direct counting algorithm would have
complexity 2.64n).

One of the few properties one can readily
prove, by virtue of the obvious sub-multiplicative
inequality cn+m ≤ cncm, is that the number cn grows
exponentially. From this inequality it follows that

µ := lim
n→∞

c1/n
n = inf

n
c1/n

n

exists [29], and further that cn ≥ µn.
However even the value of this “growth con-

stant” µ is difficult to calculate exactly. Only in
2010 was µ for one two-dimensional lattice, no-
tably the honeycomb lattice, actually proved by

Duminil-Copin and Smirnov [10] to be
√

2 +
√

2
(see Sec. 3). For other lattices in two dimensions,
and all lattices in higher dimensions, we only
have numerical estimates. For example, for the
square lattice the best current estimate is µ =
2.638158530323±2×10−12, a result I obtained based
on extensive series of Jensen [20].

In fact it is believed that, for dimensionality
d > 1 and d � 4,

cn ∼ const.× µnng .

The critical exponent g is believed to depend on
the dimension, but not on the details of the lat-
tice. In particular, it is predicted to be a rational
number, namely 11/32, in two dimensions. In
three dimensions, the best estimate we have is
g = 0.156957± 0.000009 given by Clisby [9]. There
is no reason to believe that this number is rational.

Despite these accurate estimates, we still can-
not even prove the existence of this exponent for
d < 5, let alone establish its value rigorously. For
d > 4 the higher dimensionality means that the
self-avoiding restriction is less confining than in
lower dimensions, and indeed has no effect on the
dominant asymptotic behaviour, with the result
that the SAW behaves as a random walk. More
precisely, Hara and Slade [18, 17] have proved
that g = 0 in this case, and that the scaling
limit is Brownian motion. In four dimensions the
above expression for cn must be modified by
an additional multiplicative factor ( log n)1/4, with
g = 0. The appropriately rescaled walk is also
expected to have Brownian motion as its scaling
limit. These assertions for the four-dimensional
case are believed to be true, but no proof exists.
Bounds established 50 years ago by Hammersley
and Welsh [16] have hardly been improved upon.
They proved that, for SAW in dimensionality
d ≥ 2,

µn ≤ cn ≤ µneκ
√

n .

The lower bound follows immediately from sub-
additivity, while the upper bound depends on
an unfolding of the walk. The number of possible
unfoldings can be bounded by the number of par-
titions of the integer n, which has the exponential
behaviour given above. Note that the existence
of a critical exponent implies behaviour µneκ log n,
which is rather far from the upper bound. A
year later, Kesten [23] slightly improved the upper
bound to

cn ≤ µneκn
2/(d+2) log n .

2.l.2. How large is a typical self-avoiding walk?

Another important measure of SAW is the average
size of a SAW of length n, taken uniformly at
random. The most common measure is the mean-
square end-to-end distance, which is believed to
behave as

En(|wn|2) ∼ const. n2ν ,

(for lattices in dimensions other than 4), where ν
is another critical exponent. Again, its existence
has not been proved for d < 5, but it is accepted
that for two-dimensional lattices ν = 3/4. In
three dimensions the best numerical estimate is
ν = 0.587597 ± 0.000007 [7]. In four dimensions it
is believed that ν = 1/2, and again one expects a
multiplicative factor ( log n)1/4. Finally, for d > 4 it
has been proved [18] that ν = 1/2. Rigorous results
about En(|wn|2) are almost non-existent. It would
seem intuitively obvious that

cn ≤ En(|wn|2) ≤ Cn2−ε ,

but only this year, in an important calculation, has
the upper bound been proved by Duminil-Copin
and Hammond [11] for two-dimensional SAW.
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Fig. 3. All seven 8-sided polygons on the square lattice

2.2. Self-avoiding polygons

If the end-point of a SAW is adjacent to the origin,
an additional step joining the end-point to the
origin will produce a self-avoiding circuit. If we
ignore knowledge of the origin, and distinguish
circuits only by their shape, we refer to self-
avoiding polygons (SAP). On the square lattice, the
first nonzero embedding of a SAP is the unit
square, of perimeter 4 and area 1. There are two
6-sided polygons of area 2, and seven 8-sided
polygons, shown in Fig. 3, one of which has area
4, and six of which have area 3.

Clearly, SAPs are a subset of SAWs. They
are a particularly interesting subset for at least
two reasons. Because the conjectured exponents
for SAPs (discussed below) are integers or half-
integers (which is not the case for SAWs), it is
hoped that this means the underlying solution for
the SAP case is simpler. Secondly, by including a
second parameter, that of area, SAPs can be used
to model a range of biological phenomena, such
as cell inflation and collapse [12].

Denote by pm the number of SAPs of perimeter
m, by an the number of SAPs of area n, and by pm,n
the number of SAPs of perimeter m and area n. We
can define two single variable generating func-
tions, for perimeter and areaa respectively, and a
two-variable generating function, as follows:

P(x) =
∑

m

pmxm

A(q) =
∑

n

anqn

P(x, q) =
∑
m,n

pm,nxmqn .

Hammersley [15] proved that the number
of SAPs, like SAWs, grows exponentially; more
precisely

µ = lim
m→∞

p1/2m
2m .

While it is far from obvious, Hammersley also
proved that the growth constants µ that arise in
the polygon case and the walk case are identical.

aClearly the area of a polygon is a concept peculiar to the two-
dimensional case.

While unproved, a much stronger result is widely
believed to hold, namely that

pm ∼ const.× µmmα−3 (1)

where α is a critical exponent.b The exponent α is
related to the exponent ν defined above through
the hyper-scaling relation dν = 2−α. This equation
has not been proved, but follows from physical
arguments, and of course the assumption that
the exponents exist. It therefore follows from the
result for ν quoted above that in three dimensions
α = 0.237209 ± 0.000021.

For polygons there is a second growth con-
stant, and exponent, associated with the area gen-
erating function. By concatenation arguments it
can be readily proved that

λ = lim
n→∞

a1/n
n

exists. It is also generally accepted, but not
proved, that

an ∼ const. × λnnτ .

Unfortunately we only have numerical estimates
of λ and τ [14]. However for two-dimensional
lattices τ is believed to be −1, corresponding to a
logarithmic singularity of the generating function.
That is to say,

A(q) ∼ const.× log(1 − λq),

so that an ∼ const × λn/n.
Of great interest is the two-variable generating

function P(x, y). From this, we can define the free
energy

κ(q) = lim
m→∞

1
m

log


∑

n

pm,nqn

 .

It has been proved [12] that the free energy
exists, is finite, log-convex and continuous for
0 < q < 1. For q > 1 it is infinite. The radius of
convergence of P(x, q), which we denote xc(q), is
related to the free energy by xc(q) = e−κ(q). This is
zero for fixed q > 1. A plot of xc(q) in the x−q plane
is shown (qualitatively) below. For 0 < q < 1, the
line xc(q) is believed to be a line of logarithmic
singularities of the generating function P(x, q).
The line q = 1, for 0 < x < xc(1) is believed to
be a line of finite essential singularities [12]. At the
point (xc, 1) we have more complicated behaviour,
and this point is called a tricritical point.

bNote that p2m+1 = 0 for SAP on Zd, as only polygons with
even perimeter can exist on those lattices. For such lattices
the above asymptotic form is of course only expected to hold
for even values of m. For so called close-packed lattices, such
as the triangular or face-centred cubic lattices, polygons of all
perimeters greater than two are embeddable, so Eq. (1) stands
as stated.
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Around the point (xc, 1) we expect tricritical
behaviour, so that

P(sing)(x, q)

∼ (1 − q)θF
(
(xc − x)(1 − q)−φ

)
as (x, q)→ (xc, 1−) .

Here the superscript (sing) means the singular
part. There is an additional, additive part that is
regular in the neighbourhood of (xc, 1).

For self-avoiding polygons, in a series of pa-
pers, Richard and co-authors [33, 34, 32] have
provided abundant evidence (but no proof ) for
the surprisingly strong conjecture that

F(s) = − 1
2π

log Ai
(
π

xc
(4A0)

2
3 s
)
+ C(q) .

Here Ai(x) is the Airy function, and C(q) is a func-
tion, independent of x, that arises as a constant
of integration. The exponents are believed to be
φ = 2/3 and θ = 1. Here A0 is a constant known
only numerically.

Finally, a veritable treasure trove of rigorous
results would be unlocked if we could prove that,
in the large size limit, more precisely the scaling
limit, that two-dimensional random SAWs are
described by one of the SLE processes (Schramm–
Loewner Evolution), which, in the past 20 years,
have been proved to describe the limit of several
discrete models in combinatorics and statistical
physics. Indeed, Lawler, Schramm and Werner
proved that, if the scaling limit of SAWs exists
and is conformally invariant, then this limit has to
be SLE8/3. This has been checked via simulations
by Kennedy [22]. This would in particular imply
the conjectured values of the exponents g and ν
in the two-dimensional case. We explain this in
more detail in the conclusion.

In the next section we give the proof due to
Duminil-Copin and Smirnov of the exact growth
constant for the honeycomb lattice. In the follow-
ing section we give three examples of applications
of SAWs to other areas of science, and in the
conclusion we give more detail of recent devel-
opments that we hope point the way to future
breakthroughs.

Mh,�

�

Rh,�

Mh,�

Lh,�

h

a

p

Fig. 4. A trapezoid T on the honeycomb lattice

3. The Honeycomb Lattice

As mentioned above, a breakthrough was
achieved in 2010, when Duminil-Copin and
Smirnov [10] proved that the growth constant

on the honeycomb lattice is µ =
√

2 +
√

2, as
predicted by Nienhuis [30], using compelling
physical arguments from conformal field theory,
30 years previously. The argument is, in hindsight,
so simple, and the result so important, that we
sketch it here.

We consider SAWs that start from a point a
located on the left side of a trapezoid T of width
� and height h, as shown in Fig. 4. For p a mid-
edge of T , let F( p) be the generating function of
SAW w that end at p, weighted by the number of
vertices v(w) and the number of turns T(w) (a left
turn counts +1, a right turn −1):

F( p) ≡ F( p; x,α) :=
∑

w:a�p

xv(w)eiαT(w) .

For instance, the walk of Fig. 4 visits 17 vertices,
makes 10 left turns and 7 right turns, so that its
contribution to F( p) is x17e3iα. Then, if v is any
vertex of T and p1, p2, p3 are the three mid-edges
adjacent to it, the following local identity holds:

( p1−v)F( p1)+( p2−v)F( p2)+( p3−v)F( p3) = 0 , (2)

provided x = xc := 1/
√

2 +
√

2, which is the
reciprocal of the conjectured growth constant, and
α = −5π/24. (We consider that the honeycomb
lattice is embedded in the complex plane C, so
that pi − v is a complex number). This identity
is easily proved by grouping as pairs or triplets
the SAWs that contribute to its left-hand side,
as depicted in Fig. 5. One then checks that the
contribution of each group is zero.

If we now sum (2) over all vertices v of T , then
due to the terms ( pi − v), all terms F( p) such that
p is not a mid-edge of the border disappear. After
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v
p1 = 0

= 0

p3

p2

+

++

Fig. 5. A very local proof of the local identity (2)

a few more reductions based on symmetries, one
is left with(

cos
3π
8

)
Lh,�(xc) +

1
√

2
Mh,�(xc) + Rh,�(xc) = 1 ,

where Lh,�(x) (resp. Rh,�(x), Mh,�(x)) is the generat-
ing function of SAWs w that end on the left side
(resp. right side, top or bottom) of T , weighted
by the number of vertices v(w).

By letting h and then � tend to infinity,
Duminil-Copin and Smirnov derived from this
identity that the generating function of SAWs
diverges at xc, but converges when x < xc. This
means that its radius of convergence is xc, so that

the growth constant is 1/xc =

√
2 +
√

2.
Unfortunately these ideas do not generalise

to SAW on the square or triangular lattices, for
which we only have accurate numerical estimates
for the growth constant µ.

4. Applications

One reason that SAWs and SAPs are so exten-
sively studied, apart from their intrinsic mathe-
matical interest, is that they model many prob-
lems that arise in other fields. The first such
example we will consider extends the proof given
above to the situation where the SAW can in-
teract with a surface. The second example con-
siders SAWs crossing a square, with application
to telecommunication networks, and the third ex-
ample models some recent biological experiments
where strands of DNA (a polymer) are pulled
from a wall with optical tweezers.

4.1. Walks attached to a surface

The interaction of polymers with a surface is
scientifically and industrially an important phe-
nomenon. A common example is the adherence of
paint to a surface, clearly an industrial process of
considerable significance. To model such phenom-
ena requires the inclusion of an interaction term
between the polymer and the surface. To achieve
this, we add a weight y to vertices in the surface,
as shown in Fig. 6. In physics terms, y = e−ε/kBT

where ε is the energy associated with a surface
vertex, T is the absolute temperature and kB is
Boltzmann’s constant. It is known that the growth

where p, q, r are the three mid-edges adjacent to an arbitrary v ∈ V (Ω).
In Section 2.1 we outlined the proof by Duminil-Copin and Smirnov [30] that the growth constant

of the self-avoiding walk is equal to x−1
c = (2 cos(π/8)) =

�
2 +

√
2. Recall that the proof involved

a special domain ST,L (see Figure 2.3) and generating functions of SAW ending on the different
sides of this domain.

Here we generalise their construction to include a boundary weight. As shown in Figure 4.2,
we will identify the surface with the β boundary of ST,L.

α β

�+

�−

a
2L

T

Figure 4.2: Finite patch S3,1 of the hexagonal lattice with a boundary. Contours, possibly closed,
of the O(n) model run from mid-edge to mid-edge acquiring a weight x for each step, and a weight
y for each contact (shown as a black disc) with the right hand side boundary. The SAW component
of a loop configuration starts on the central mid-edge of the left boundary (shown as a).

Let us define the following generating functions:

AT,L(x, y) :=
�

γ⊂ST,L
a→α\{a}

x�(γ)yν(γ)nc(γ),

BT,L(x, y) :=
�

γ⊂ST,L
a→β

x�(γ)yν(γ)nc(γ),

ET,L(x, y) :=
�

γ⊂ST,L

a→�+∪�−

x�(γ)yν(γ)nc(γ),

where the sums are over all configurations for which the SAW component runs from a to the α, β
or �+, �− boundaries respectively. Furthermore define the special generating function

CT,L(x, y) :=
�

γ⊂ST,L
a→a

x�(γ)yν(γ)nc(γ)

which sums over configurations comprising only closed loops inside ST,L; that is, configurations
whose self-avoiding walk component is the empty walk a → a.

122

Fig. 6. Trapezoidal domain ST,L with vertices on the right-hand
side wall, shown in bold, carrying a weight y

constant µ = 1/xc for such walks is the same as for
the bulk case.

Let c+n (i) be the number of half-plane walks of
n-steps, with i monomers in the surface, and de-
fine the partition function (or generating function)
as

C+n ( y) =
n∑

i=0

c+n (i)yi .

If y is large, the polymer adsorbs onto the surface,
while if y is small, the walk is repelled by the
surface.

Proposition 1. For y > 0,

µ( y) := lim
n→∞

C+n ( y)1/n

exists and is finite. It is a log-convex, non-decreasing
function of log y, and therefore continuous and almost
everywhere differentiable.

For 0 < y ≤ 1,

µ( y) = µ(1) ≡ µ .

Moreover, for any y > 0,

µ( y) ≥ max( µ,
√

y) .

This behaviour implies the existence of a critical value
yc, with 1 ≤ yc ≤ µ2, which delineates the transition
from the desorbed phase to the adsorbed phase:

µ( y)
{
= µ if y ≤ yc ,
> µ if y > yc .

In 1995 Batchelor and Yung [1] extended Nien-
huis’s [30] work to the adsorption problem just
described, and making similar assumptions to
Nienhuis conjectured the value of the critical
surface fugacity for the honeycomb lattice SAW
model, to be yc = 1+

√
2. In 2012 this was proved

by Beaton, Bousquet-Mélou, de Gier, Duminil-
Copin and Guttmann [3], and here we will sketch
their proof.

Take the same trapezoid as above, now called
ST,L, and add weights to the vertices on the β
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boundary, as shown in bold in the figure above:
Then we find the corresponding identity between
generating functions, with y∗ = 1 +

√
2, to be

1 = cos
(

3π
8

)
AT,L(xc, y) + cos

(
π

4

)
ET,L(xc, y)

+
y∗ − y

y(y∗ − 1)
BT,L(xc, y)

where y is conjugate to the number of visits to
the β boundary. The generating functions AT,L,
BT,L and ET,L are two-variable generalisations of
those defined in the previous section. To prove
the conjecture we need to show that yc = y∗.

It is safe to take L → ∞ so that the trapezoid
becomes a strip. The identity then becomes

1 = cos
(

3π
8

)
AT(xc, y) + cos

(
π

4

)
ET(xc, y)

+
y∗ − y

y( y∗ − 1)
BT(xc, y) .

It is then straightforward to prove that

(i) ET(xc, y) = 0 for 0 ≤ y < y∗,
(ii) yc ≥ y∗,

(iii) limT→∞ AT(xc, y) = A(xc, y) = A(xc) is constant
for 0 ≤ y < y∗.

If we now write

cos (3π/8)A(xc, y) = 1 − δ

then the above identity reduces to

B(xc, y) = lim
T→∞

BT(xc, y) =
δy( y∗ − 1)

y∗ − y

and in particular

B(xc, 1) = δ.

Proposition 1. If δ = 0 then yc = y∗.

The proof uses a decomposition of A walks in
a strip of width T into B walks in that same strip,
and gives rise to an inequality. In particular, for
y < yc = limT→∞ yT,

0 ≤ αxc +
1

BT(xc, 1)
y∗ − y

y( y∗ − 1)
.

If BT(xc, 1) tends to 0, this forces y∗ ≥ yc, other-
wise the right-hand side would become arbitrarily
large in modulus and negative as T → ∞ for
y∗ < y < yc.

Together with y∗ ≤ yc, this establishes yc = y∗ =
1+
√

2 and completes the proof of the proposition.
The proof that δ = 0 is complicated, and unlike

most other proofs we have given is almost totally
probabilistic. It is unrealistic to give any details,
but in essence one first uses renewal theory to
show that δ−1 is the expected height of an irre-
ducible bridge, which is a SAW that crosses the
strip from left to right, and cannot be expressed

as the concatenation of two or more smaller such
bridges. Next one shows that, for irreducible
bridges, E[width] < ∞ implies that E[height] <
∞. Finally one shows that the assumption that
E[height] < ∞ leads to a contradiction, from which
the desired result that δ = 0 readily follows.

4.2. Walks crossing a square

Some years ago I was asked by a telecommu-
nications engineer to help him with the follow-
ing problem: His company had a square grid of
nodes, connected by wires, and phone-calls could
be routed from the bottom left-hand corner to the
top right-hand corner of the grid. He wished to
know how many such routes there were, as this
determined the carrying capacity of the network.

After some discussion we agreed that this was
simply the question “how many distinct SAWs are
there on a square grid of side-length L originating
at (0, 0) and ending at (L, L)?” The problem as
stated was first considered by Knuth [27] in 1976,
who gave a Monte Carlo estimate for the number
of paths for L = 10, a result we now know exactly.
The problem was generalised by Whittington and
the author [38] to include a weight x associated
with each step of the walk. This gives rise to a
canonical model of a phase transition. For x < 1/µ
the average length of a SAW grows as L, while
for x > 1/µ it grows as L2. Here µ is the growth
constant of unconstrained SAWs on the square
lattice, defined above. For x = 1/µ numerical
evidence, but no proof, was given that the average
walk length grows as L4/3. Let cn(L) denote the
number of walks of length n. Clearly cn(L) = 0
for n < 2L. We denote the generating function
by CL(x) :=

∑
n cn(L)xn. The answer to the original

question is
∑

n cn(L).
Subsequently, Madras [28] proved a number of

relevant results. In fact, most of Madras’s results
were proved for the more general d-dimensional
hypercubic lattice, but here we will quote them in
the more restricted two-dimensional setting.

Theorem 2. The following limits,

µ1(x) := lim
L→∞

CL(x)1/L and µ2(x) := lim
L→∞

CL(x)1/L2
,

are well-defined in R ∪ {+∞}.
More precisely,

(i) µ1(x) is finite for 0 < x ≤ 1/µ, and is infinite for
x > 1/µ. Moreover, 0 < µ1(x) < 1 for 0 < x < 1/µ
and µ1(1/µ) = 1.

(ii) µ2(x) is finite for all x > 0. Moreover, µ2(x) = 1
for 0 < x ≤ 1/µ and µ2(x) > 1 for x > 1/µ.

In [38] the existence of the limit µ2(x) was
proved, and in addition upper and lower bounds
on µ2(x) were established.
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The average length of a (weighted) walk is
defined to be

〈n(x, L)〉 :=
∑

n

ncn(L)xn/
∑

n

cn(L)xn . (3)

We define Θ(x) as follows: Let a(x) and b(x) be
two functions of some variable x. We write that
a(x) = Θ(b(x)) as x→ x0 if there exist two positive
constants κ1 and κ2 such that, for x sufficiently
close to x0,

κ1 b(x) ≤ a(x) ≤ κ2 b(x) .

Theorem 3. For 0 < x < 1/µ, we have that 〈n(x, L)〉 =
Θ(L) as L→ ∞, while for x > 1/µ, we have 〈n(x, L)〉 =
Θ(L2).

In [38] it was proved that 〈n(1, L)〉 = Θ(L2).
The situation at x = 1/µ is unknown. In [5] we
gave compelling numerical evidence that in fact
〈n(1/µ, L)〉 = Θ(L1/ν) , where ν = 3/4, in accordance
with an intuitive suggestion of Madras in [28].

Theorem 4. For x > 0, define f1(x) = log µ1(x) and
f2(x) = log µ2(x).
(i) The function f1 is a strictly increasing, negative-

valued convex function of log x for 0 < x < 1/µ.
(ii) The function f2 is a strictly increasing, convex

function of log x for x > 1/µ, and satisfies 0 <
f2(x) ≤ log µ + log x.

Some, but not all of the above results were pre-
viously proved in [38], but these three theorems
elegantly capture all that is rigorously known. In
[5] an extensive numerical study was described,
including exact enumerations up to squares of
side 19. For the largest square there are exactly
1 523 344 971 704 879 993 080 742 810 319 229 690
899 454 255 323 294 555 776 029 866 737 355 060
592 877 569 255 844 distinct paths! The number
of such paths, as we have seen, grows as λL2

. In
[5] it was also proved that 1.628 < λ < 1.782 and
estimated that λ = 1.744550 ± 0.000005.

4.3. Pulling a polymer from a wall

During the past decade, force has been used as a
thermodynamic variable to understand molecular
interactions and their role in the structure of bio-
molecules [35, 21, 37]. By exerting a force in
the picoNewton range, one aims to experimen-
tally study and characterise the elastic, mechan-
ical, structural and functional properties of bio-
molecules [6].

In [24] SAWs were used to model the situation
in which a polymer is attached to a surface and
pulled from that surface by an applied force.
The situation is shown in Fig. 7. Interactions are
introduced between neighbouring monomers on
the lattice that are not adjacent along the chain.
The pulling force is modelled by introducing an
energy proportional to the x-component of the

Fig. 7. An interacting self-avoiding walk on the square lattice
with one end attached to a surface and subject to a pulling
force at the other end. Each step of the walk connecting a pair of
monomers is indicated by a thick solid line while interactions be-
tween non-bonded nearest neighbour monomers are indicated
by jagged lines

end-to-end distance. One end of the polymer is
attached to an impenetrable surface while the
polymer is being pulled from the other end with
a force acting along the x-axis.

Boltzmann weights ω = exp(− ε/kBT) and u =
exp(− F/kBT) conjugate to the nearest neighbour
interactions and force, respectively, were intro-
duced, where ε is the interaction energy, kB is
Boltzmann’s constant, T the temperature and F
the applied force. For simplicity, we set ε = −1
and kB = 1. The relevant finite-length partition
functions are

ZN(F, T) =
∑

all walks

ωmux =
∑
m,x

C(N, m, x)ωmux , (4)

where C(N, m, x) is the number of interacting
SAWs of length N having m nearest neighbour
contacts and whose end-points are a distance
x = xN − x0 apart. The partition functions of the
constant force ensemble, ZN(F, T), and constant
distance ensemble, ZN(x, T) =

∑
m C(N, m, x)ωm, are

related by ZN(F, T) =
∑

x ZN(x, T)ux. The free ener-
gies are evaluated from the partition functions

G(x)=−T log ZN(x, T) and G(F)=−T log ZN(F, T) .
(5)

Here 〈x〉 = ∂G(F)
∂F and 〈F〉 = ∂G(x)

∂x are the control
parameters of the constant force and constant
distance ensembles, respectively.

All possible conformations of the SAW were
enumerated. The challenge facing exact enumer-
ations is to increase the chain length. Using di-
rect counting algorithms the time required to
enumerate all the configurations increases as µN,
where µ is the connective constant of the lattice
( µ ≈ 2.638 on the square lattice). So even with
a rapid increase in computing power only a few
more terms can be obtained each decade. In [24]
the number of interacting SAWs was calculated
using transfer matrix techniques [19]. Combined
with parallel processing these algorithms allowed
the enumerations to be extended to chain lengths
up to 55 steps, roughly doubling the previously
available enumerations.
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Fig. 8. (a) The force-temperature phase diagram for flexible
chains. (b) The fluctuations χ in the number of contacts vs. tem-
perature at fixed force F = 1.0 for various values of the chain
length N

In Fig. 8(a) we show the force-temperature
phase diagram for flexible chains. At low temper-
ature and force the polymer chain is in the col-
lapsed state and as the temperature is increased
(at fixed force) the polymer chain undergoes a
phase transition to an extended state. The tran-
sition temperature as plotted in Fig. 8(a) was
found (in the thermodynamic limit N → ∞) by
studying the reduced free energy per monomer.
The most notable feature of the phase-diagram
is the re-entrant behaviour — that is to say, the
initial increase of force with temperature, prior to
a decrease.

The positive slope dFc/dT at T = 0 confirms
the existence of re-entrance in the F − T phase-
diagram. The authors pointed out that the value
of the transition temperature obtained in the ther-
modynamic limit and the one obtained from the
fluctuations in non-bonded nearest neighbours
(which can be calculated exactly for finite N = 55)
gives almost the same value (within error bars
of ±0.01). The fluctuations are defined as χ =
〈m2〉 − 〈m〉2, with the k’th moment given by

〈mk〉 =
∑
m,x

mkC(N, m, x)ωmux
/∑

m,x

C(N, m, x)ωmux .

In the panels of Fig. 8(b) the emergence of two
peaks in the fluctuation curves with increasing N

SELF-AVOIDING WALKS 13

a

aδ

b
bδ

Ω

Figure 9. Discretisation of domain Ω.

Schramm and Werner [25] is that this random curve converges to SLE8/3 from a to b in the domain Ω. These two
conjectures must be considered the principal open problems in the field. If they could be proved, the existence
and value of the critical exponents, as predicted by conformal field theory for two-dimensional walks would be
proved.

5.2. Schramm Löwner Evolution

For an approachable discussion of SLEκ, see Chapter 15 of [14]. Here we give a very minimal outline. Let H
denote the upper half-plane. Consider a path γ starting at the boundary and finishing at an internal vertex.
Then H\γ is the complement of this path, and is a slit upper half-plane. It follows from the Riemann Mapping
Theorem that it can be conformally mapped to the upper half-plane. Löwner [26] discovered that by specifying
the map so that it approaches the identity at infinity, the conformal map so described (actually a family of maps,
appropriate to each point on the curve) satisfies a simple differential equation, called the Löwner equation. The
mapping can alternatively be defined by a real function. This observation led Schramm to apply the Löwner
equation to a conformally invariant measure for planar curves. That is to say, the Löwner equation generates
a set of conformal maps, driven by a continuous real-valued function. Scramm’s profound insight was to use
Brownian motion Bt as the driving function3. So let Bt, t ≥ 0 be standard Brownian motion on R and let κ be
a real parameter. Then SLEκ is the family of conformal maps gt : t ≥ 0 defined by the Löwner equation

∂

∂t
gt(z) =

2

gt(z)−
√
κBt

, g0(z) = z.

This is actually called chordal SLEκ as it describes paths growing from the boundary and ending on the boundary.
If κ ≤ 4 then the path is almost surely a simple curve, in the upper half plane. Larger values of κ lead to more
complicated behaviour.

Hopefully this rather vague description will convey the flavour of this exciting and powerful development in
studying not just two-dimensional SAWs, but a variety of other processes, such as percolation, the random
cluster model, and the Ising model. We refer the reader to [4] for greater detail of both SLE and these appli-
cations. Despite these remarkable advances, we still have no real idea how to obtain comparable results for the
3-dimensional model4.

3It is the only process compatible with both conformal invariance and the so-called domain Markov property.
4This is also true of other classical models, such as the Ising model, the Potts model and percolation.

Fig. 9. Discretisation of domain Ω

at fixed force F = 1.0 are shown. The twin-peaks
reflect the fact that in the re-entrant region as one
increases T (with F fixed) the polymer chain un-
dergoes two phase transitions. The importance of
powerful enumeration data is highlighted by the
observation that the twin-peaks are not apparent
for small values of N. Many more details and
comparison with experiments are given in [24] —
our purpose here is just to show the applicability
of SAWs to this problem.

5. Conclusion

5.1. The scaling limit

One topic we have failed to adequately address
is the question of the scaling limit of SAW. An
intuitive grasp of this concept can perhaps be
gained by looking at the first two figures in this
article. In the first figure, the effect of the lattice
is clear. In the second figure, there is no obvious
lattice, and indeed no way to tell that this is
not a continuous curve. We formalise this notion
as follows: Consider a smooth (enough) closed
domain Ω, with an underlying square grid, with
grid spacing δ as shown in Fig. 9. Denote by Ωδ
that portion of the grid contained in Ω. Take two
distinct points on the boundary of Ω labelled a
and b. Now take the nearest lattice vertex to a,
and label it aδ, and similarly bδ is the label of the
nearest lattice vertex to point b. Consider the set
of SAWs ω(Ωδ) on the finite domain Ωδ from aδ
to bδ. Recall that δ > 0 sets the scale of the grid.
Now let |ω| be the length of a walk ωδ ∈ ω(Ωδ),
and denote the weight of the walk by x|ω|. The
reason for this is that the walks are of different
lengths, making the uniform measure not partic-
ularly natural. (There is also a normalising factor,
which for simplicity we ignore.)

As we let δ → 0 we expect the behaviour of
the walk to depend on the value of x. For x < xc
it is possible to prove that ωδ goes to a straight
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line as δ → 0. (Strictly speaking it converges in
distribution to a straight line, with fluctuations
O(
√
δ).) For x > xc it is expected that ωδ becomes

(again, in distribution) space-filling as δ→ 0. But
at x = xc it is conjectured that ωδ becomes (in
distribution) a random continuous curve, and is
conformally invariant. This describes the scaling
limit. If this conjecture is correct, a second, pivotal,
conjecture by Lawler, Schramm and Werner [25] is
that this random curve converges to SLE8/3 from a
to b in the domain Ω. These two conjectures must
be considered the principal open problems in the
field. If they could be proved, the existence and
value of the critical exponents, as predicted by
conformal field theory for two-dimensional walks
would be proved.

5.2. Schramm–Löwner Evolution

For an approachable discussion of SLEκ, see Chap-
ter 15 of [14]. Here we give a very minimal out-
line. Let H denote the upper half-plane. Consider
a path γ starting at the boundary and finishing at
an internal vertex. Then H\γ is the complement of
this path, and is a slit upper half-plane. It follows
from the Riemann Mapping Theorem that it can
be conformally mapped to the upper half-plane.
Löwner [26] discovered that by specifying the
map so that it approaches the identity at infinity,
the conformal map so described (actually a family
of maps, appropriate to each point on the curve)
satisfies a simple differential equation, called the
Löwner equation. The mapping can alternatively
be defined by a real function. This observation
led Schramm to apply the Löwner equation to a
conformally invariant measure for planar curves.
That is to say, the Löwner equation generates a
set of conformal maps, driven by a continuous
real-valued function. Scramm’s profound insight
was to use Brownian motion Bt as the driving
function.c So let Bt, t ≥ 0 be standard Brownian
motion on R and let κ be a real parameter. Then
SLEκ is the family of conformal maps gt : t ≥ 0
defined by the Löwner equation

∂

∂t
gt(z) =

2
gt(z) −

√
κBt

, g0(z) = z .

This is actually called chordal SLEκ as it describes
paths growing from the boundary and ending
on the boundary. If κ ≤ 4 then the path is
almost surely a simple curve, in the upper half
plane. Larger values of κ lead to more complicated
behaviour.

Hopefully this rather vague description will
convey the flavour of this exciting and pow-
erful development in studying not just two-
dimensional SAWs, but a variety of other pro-
cesses, such as percolation, the random cluster

cIt is the only process compatible with both conformal invari-
ance and the so-called domain Markov property.

model, and the Ising model. We refer the reader
to [4] for greater detail of both SLE and these ap-
plications. Despite these remarkable advances, we
still have no real idea how to obtain comparable
results for the 3-dimensional model.d

In this article I have only scratched the surface
of this topic. More details on the mathemati-
cal aspects can be found in [29] and the recent
reviews [2, 4]. More information on numerical
aspects and some applications, particularly to the
SAP subset can be found in the monograph [14].
Another approach to this problem that has not
been discussed is to simplify the problem so that
it can be solved (see [14, Chap. 3]). Unfortunately
most such simplifications involve rendering the
model Markovian, which removes a significant
feature.
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