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Distributive Lattices and Coherence in
Homological Algebra

Marco Grandis

Abstract. This article is about coherence in homologi-
cal algebra, and only needs the elementary theory of
abelian groups and lattices. Its results are developed
in a recent book to analyse spectral sequences — an
important tool of homological algebra with applications
in many branches of mathematics.

0. Introduction

Spectral sequences, one of the main tools of homo-

logical algebra (see [12, 8, 11, 17, 19, 13]), find ap-

plications in many branches of mathematics, from

algebraic topology to algebraic geometry, differ-

ential geometry and partial differential equations,

thence to physics through the C-spectral sequence

of a PDE [18, 15] and control theory [9].

This expository article is about coherence in

homological algebra. The main applications, de-

veloped in a recent book [7], deal with spectral

sequences, but this exposition only needs the

elementary theory of abelian groups and lattices.

In fact, various parts of homological algebra

are based on “induction on subquotients” (i.e.

quotients of subgroups, or — equivalently —

subgroups of quotients). However, the coherence

of this procedure of induction leads to serious

problems, that are often overlooked.

Problems may already arise in the simplest

situation, canonical isomorphisms between subquo-

tients of the same object (induced by the identity

of the latter): first, such isomorphisms need not

be closed under composition; second, if we extend

them in this sense the result need not be uniquely

determined (as shown in Sec. 3). Yet, such isomor-

phisms are frequently used when working with

complicated systems, in particular those that give

rise to spectral sequences.

The solution to this coherence problem de-

pends on the distributivity of the lattices of

subgroups generated by the system that we

are studying. We prove in Sec. 6 the following

theorem:

Given a sublattice X of the (modular) lattice of

all subgroups of an abelian group A, let us consider

the subquotients M/N of A with M, N belonging

to X. Then the canonical isomorphisms among these

subquotients are closed under composition (and form

a coherent system) if and only if the lattice X is

distributive.

This is an elementary form of our “Coherence

theorem for homological algebra”. A more com-

plete form of the theorem, sketched in Sec. 8, can

be found in the book [7] (see also [4]–[6]).

These works prove that the following systems

are “distributive”, i.e. they generate distributive

lattices of subgroups and their coherence automati-

cally holds:

– bifiltered object,

– sequence of morphisms,

– filtered chain complex,

– double complex,

– Massey’s exact couple [12],

– Eilenberg’s exact system [2].

The same property of distributivity also per-

mits representations of these structures by means

of lattices of subsets; this yields a precise founda-

tion for the heuristic tool of Zeeman diagrams [20,

8], as universal models of spectral sequences.

On the other hand, the bifiltered chain complex

is not distributive, and we show in [7] a strong

form of inconsistency in this system, that can lead

to gross errors if the interaction of the two spectral

sequences of the complex is explored further than

it is normally done.

The symbol ⊂ always denotes weak inclusion

(of subsets, subgroups, etc.).

1. Subquotients and Regular Induction

For the sake of simplicity, we work in the cate-

gory Ab of abelian groups, but everything can be

extended to abelian categories and even further

(see Sec. 8).

A subquotient S = M/N of an abelian group

A is a quotient of a subgroup (M) of A, or

equivalently a subgroup of a quotient (A/N). It
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is determined by two subgroups N ⊂ M of A,

via a commutative square that is bicartesian, i.e.

pullback and pushout:

M �� m ��

p
����

A

q
����

S ��
n

�� A/N

(1)

The prime example, of course, is the homology

subquotient H = Ker ∂/Im ∂ of a differential group

(A, ∂); more complex examples come from the

terms of spectral sequences.

A homomorphism f : A → B is given. If M

and H are subgroups of A and B respectively,

and f (M) ⊂ H, we have a commutative diagram

with short exact rows, and two induced homo-

morphisms

M ��m ��

f ′

��

A
p �� ��

f

��

A/M

f ′′

��
H ��

h
�� B

u
�� �� B/H

(2)

More generally, given two subquotients M/N

of A and H/K of B, suppose that:

f (M) ⊂ H and f (N) ⊂ K. (3)

Then, we have a regularly induced homomor-

phism g : M/N → H/K. In fact, one can form the

diagram below, by applying (2) in two ways

M ��m ��

f ′

��

A
q �� ��

f

��

A/N

f ′′

��
H ��

h
�� B

v
�� �� B/K

(4)

Then we get a new commutative diagram, and

the homomorphism g, by factorisation of the rows

of the previous diagram through their images

M
q′ �� ��

f ′

��

M/N ��m
′

��

g

��

A/N

f ′′

��
H

v′
�� �� H/K ��

h′
�� B/K

(5)

Regular induction is (obviously) preserved by

composition. But it is too restricted a notion.

2. Canonical Isomorphisms

We now use the category RelAb of (additive)

relations, or (additive) correspondences, of abelian

groups (cf. Mac Lane [10]).

A relation a : A→ B is a subgroup of the direct

sum A ⊕ B. It can be viewed as a “partially de-

fined, multi-valued homomorphism”, that sends

an element x ∈ A to the subset {y ∈ B | (x, y) ∈ a}

of B. The composite ba, with b : B→ C, is

{(x, z) ∈ A⊕C | ∃y ∈ B : (x, y) ∈ a, (y, z) ∈ b} .

The converse relation of a : A → B is obtained

by reversing pairs, and written as a♯ : B→ A. This

involution is regular in the sense of von Neu-

mann, i.e. aa♯a = a, for all relations a. Therefore a

monorelation, i.e. a monomorphism in the category

RelAb, is characterised by the condition a♯a = 1,

and an epirelation by the condition aa♯ = 1.

The category Ab is embedded in RelAb, iden-

tifying a homomorphism with its graph. This

embedding preserves monomorphisms and epi-

morphisms (but we shall see that a monorelation

is more general than an injective homomorphism).

Isomorphisms are the same, in these categories.

Let us come back to the bicartesian square

making S into a subquotient M/N of the abelian

group A

M �� m ��

p
����

A

q
����

S ��
n

��
s

��
�

�
�

�

A/N

(6)

This square determines one relation s = mp♯ =

q♯n : S → A, that sends the class [x] ∈ M/N to

all the elements of the lateral x + N in A. It is

actually a monorelation (since s♯s = id(S)) and all

monorelations with values in A are of this type,

up to isomorphism. The subquotients of the abelian

group A amount thus to the subobjects of A in

RelAb.

RelAb makes possible to consider a more gen-

eral notion of induction on subquotients, as de-

fined in [10]. Given a relation a : A → B and two

subquotients s : S → A, t : T → B, we say that a

induces from s to t the relation

t♯as : S→ T. (7)

In particular, if a is a homomorphism with

a regularly induced homomorphism S → T, the

latter coincides with t♯as.

If s, t are subquotients of the same object A, the

relation u = t♯s : S→ T induced by the identity of

A will be called the canonical relation from s to t;

and a canonical isomorphism if it is an isomorphism

(of RelAb or Ab, equivalently). The isomorphism

u need not be regularly induced.

Writing the subquotient s as H/K, and t as

H′/K′, it is easy to verify the following properties
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of the canonical relation u = t♯s : H/K→ H′/K′:

(a) u is everywhere defined ⇔ H ⊂ H′ ∨K,

(a∗) u has total values ⇔ H′ ⊂ H ∨K′,

(b) u has a null annihilator ⇔ H ∧K′ ⊂ K,

(b∗) u is single-valued ⇔ H′ ∧K ⊂ K′,

(c) u is an isomorphism ⇔ (H ∨K′ = H′ ∨K,

H ∧K′ = H′ ∧K).

It follows that

(d) u is a regularly induced isomorphism ⇔ (K =

H ∧K′, H′ = H ∨K′),

which shows that a regularly induced isomor-

phism is the same as a second-type Noether

isomorphism

H/(H ∧K′)→ (H ∨K′)/K′. (8)

We write H/KΦH′/K′ the property expressed

in (c). It is obviously reflexive and symmetric, but

not transitive in general, as shown below.

It is easy to see that, if H/KΦH′/K′, there is a

commutative diagram of canonical isomorphisms

(between Φ-related subquotients of A)

(H ∨H′)/(K ∨K′)

H/K

������� u ������������ H′/K′
�������

(H ∧H′)/(K ∧K′)

������� �������
(9)

Note that the solid arrows are regularly in-

duced (Noether) isomorphisms; this is important,

because regular induction is always respected by

composition.

3. A Case of Incoherence

The following examples show some instances

of inconsistency of induction on subquotients: first,

canonical isomorphisms need not be closed under

composition; second, if we extend them in this

sense the result need not be uniquely determined.

As in Mac Lane’s book [10], our examples

of inconsistency are based on the lattice L(A) of

subgroups of A = Z⊕Z, and more particularly on

the (non-distributive) triple formed of the diagonal

∆ and two of its complements, the subgroups A1

and A2
A1 = Z ⊕ 0, A2 = 0 ⊕ Z,

Ai ∨∆ = A, Ai ∧∆ = 0.
(10)

We thus have the subquotients mi : Ai → A and

s = p♯ : A/∆→ A.

(a) The identity of A induces two canonical iso-

morphisms ui = pmi : Ai → A/∆ (regularly in-

duced Noether isomorphisms, by (10)), and a

canonical isomorphism u−1
2 : A/∆ → A2 (that is

not regularly induced).

Then, the composed isomorphism w = u−1
2 u1 :

A1 → A2 is not canonical. Indeed:

w : A1 → A/∆→ A2,

(x, 0) �→ [(x, 0)] = [(0,−x)] �→ (0,−x),
(11)

while the canonical relation m♯2.m1 : A1 → A2 has

graph {(0, 0)}.

(b) Using the subgroup ∆′ = {(x,−x) | x ∈ Z}

instead of the diagonal ∆, we get the opposite

composed isomorphism from A1 to A2

A1 → A/∆′ → A2,

(x, 0) �→ [(x, 0)] = [(0, x)] �→ (0, x).
(12)

This shows that a composite A1 → A2 of

canonical isomorphisms between subquotients of

Z
2 is not determined.

Now, a change of sign can be quite important,

in homological algebra and algebraic topology.

For instance, it is the case in the usual argument

proving that “even-dimensional spheres cannot

be combed”: if the sphere Sn has a non-null

vector field, then its antipodal map t : Sn → Sn is

homotopic to the identity, and the degree (−1)n+1

of t must be 1. The conclusion cannot be obtained

if we only know the induced homomorphism

t∗n : Hn(Sn)→ Hn(Sn) up to sign change.

4. Coherent Systems of Isomorphisms

Let X be a sublattice of the (modular) lattice L(A)

of subgroups of the abelian group A; we always

assume that X contains the least and greatest

elements of L(A). We are interested in the set X̂

of all the subquotients of A with numerator and

denominator in X, whose coherence is discussed

below.

Plainly, the set X̂ can be identified with the set

X2 of decreasing pairs (numerator, denominator)

of X, where the relation (x, y)Φ (x′, y′) is expressed

by the following two equivalent conditions:

(a) x ∨ y′ = x′ ∨ y, x ∧ y′ = x′ ∧ y,

(b) x � x′ ∨ y, x′ � x ∨ y′, x ∧ y′ � y, x′ ∧ y � y′.

For a system Σ of subquotients of A (usually

of the previous form), we are interested in the

following equivalent properties

(i) whenever u : S → S′ and v : S′ → S′′ are

induced isomorphisms between elements of the

system, the composed isomorphism vu coincides

with the canonical relation S→ S′′,
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(ii) the relation Φ is an equivalence relation among

the subquotients of Σ, and all diagrams of canon-

ical isomorphisms between them commute.

When this holds we say that Σ is a coherent

system of subquotients of A. We also express this

fact saying that the canonical isos among all S ∈

Σ are closed under composition, or form a coherent

system of isomorphisms. (Since Mac Lane’s paper

[11], a coherence theorem in category theory states

that, under suitable assumptions, all the diagrams

of a given type commute.)

When such a system has been fixed (e.g. using

the Coherence theorem below) we shall express

the (equivalence!) relation SΦ S′ of Σ by saying

that the subquotients S and S′ are canonically

isomorphic (within Σ). But expressing in this way

the relation Φ when transitivity does not hold is

misleading and should be carefully avoided.

We have seen that the whole system of sub-

quotients of Z2 is not coherent (Sec. 3); the same

holds for any abelian group A⊕A, where A is not

trivial.

Even when a set Σ = X̂ is coherent, one should

not expect that all the induced homomorphisms

(or even less relations) be closed under com-

position. In fact, the composite of the canonical

homomorphisms

A/0→ A/A→ 0/0→ A/0

is null, while the canonical homomorphism

A/0 → A/0 is the identity (and all these subquo-

tients necessarily belong to X̂).

5. Lemma

Let X be a modular lattice. The following conditions

are equivalent:

(i) the lattice X is distributive,

(ii) the relation (x, y)Φ (x′, y′) defined above on the

set X2 of decreasing pairs of X is an equivalence

relation.

Proof. Let X be distributive, and assume that

(x, y)Φ (x′, y′)Φ (x′′, y′′). Then:

x = (x′ ∨ y) ∧ x = (x′′ ∨ y′ ∨ y) ∧ x

� x′′ ∨ (y′ ∧ x) ∨ y = x′′ ∨ (y ∧ x′) ∨ y = x′′ ∨ y.

The other three inequalities of (x, y)Φ (x′′, y′′),

in form (b) of Sec. 4, are proved in a similar way.

Conversely, suppose that the relation Φ is tran-

sitive. Let M = {m′, x, y, z, m′′} be a sublattice of X,

where the meet (resp. join) of any two elements

out of x, y, z is m′ (resp. m′′). Then we have

(x, m′)Φ (m′′, y)Φ (z, m′), whence (x, m′)Φ (z, m′)

and x = z.

In other words, the modular lattice X cannot

have a sublattice M as above, formed of five

distinct elements; by a well-known theorem ([1],

II.8, Theorem 13), X must be distributive.

6. Coherence Theorem of Homological

Algebra (Reduced Form)

Theorem. Let X be a sublattice of the lattice L(A) of

subgroups of the abelian group A. Then the following

conditions are equivalent:

(i) the lattice X is distributive,

(ii) the family X̂ is coherent (i.e. the canonical iso-

morphisms among subquotients of A with numer-

ator and denominator belonging to X are closed

under composition).

Proof. If (ii) holds, the relation Φ is transitive in

X̂ (or equivalently in X2) and X is distributive, by

the previous lemma.

Conversely, let us assume that X is distribu-

tive, and consider two canonical isomorphisms

between three subquotients

u : H/K→ H′/K′, v : H′/K′ → H′′/K′′. (13)

We must prove that the composite vu is the

canonical relation w : H/K → H′′/K′′. By Lemma

5, these three subquotients are Φ-equivalent.

Let us write

S1 = (H ∧H′)/(K ∧K′),

S2 = (H′ ∧H′′)/(K′ ∧K′′),

S0 = (H ∧H′ ∧H′′)/(K ∧K′ ∧K′′).

By Sec. 2, we can form the following com-

mutative diagram, where all subquotients are Φ-

equivalent, and the solid arrows are regularly in-

duced by id(A)

H/K
u ����� H′/K′

v ����� H′′/K′′

S1

�� ����������
S2

����������

��

S0

����������
�����������

(14)

But we can also form a second commutative

diagram with regularly induced solid arrows

H/K
w ����������� H′′/K′′

S1

��

(H ∧H′′)/(K ∧K′′)

��������
���������

S2

��

S0

�����������
�� ������������

(15)
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Since the four solid arrows of the “boundary”

of these two diagrams coincide, the thesis follows:

vu = w.

7. Filtered Chain Complexes

Let us now consider one of the most usual struc-

tures giving rise to a spectral sequence, a filtered

chain complex A∗ of abelian groups, with (canoni-

cally) bounded filtration

A∗ = ((An), (∂n), (FpAn)). (16)

This is a chain complex of abelian groups

... An
∂n
−→ An−1 → ... → A1

∂1
−→ A0

(∂n∂n+1 = 0),

where each component An has a filtration of

length n + 1, consistently with the differentials:

0 ⊂ F0An ⊂ ... FpAn ⊂ ... FnAn = An,

∂n+1(FpAn+1) ⊂ FpAn.
(17)

On each component An the filtrations of An+1

and An−1 produce a second finite filtration (of

length 2n+3), by direct and inverse images along

the differentials (while the other components have

a trivial effect)

0 ⊂ ∂n+1(F0An+1) ⊂ ... ∂n+1(Fn+1An+1)

= Im ∂n+1 ⊂ Ker ∂n = ∂
−1
n (0) ⊂

∂−1
n (F0An−1) ⊂ ... ∂−1

n (Fn−1An−1) = An.

(18)

By a well-known Birkhoff theorem on the free

modular lattice generated by two chains ([Bi],

III.7, Theorem 9), the two filtrations generate a

finite, distributive lattice of subgroups of An, that

can be represented as (a quotient of) a lattice

of subsets of the plane. (Notice the crucial role

played here by the condition ∂∂ = 0: without that,

the lattice generated by the data would not be

distributive.)

In particular, FpAn has a filtration of relative

cycles and relative boundaries, that is the “trace” of

the second filtration (18) (with n = p + q)

Zr
pq(A∗) = FpAn ∧ ∂

−1(Fp−rAn−1),

Br
pq(A∗) = FpAn ∧ ∂(Fp+rAn+1).

(19)

Now, the term Er
pq, of the spectral sequence of

A∗ is usually defined as a subquotient of An (with

n = p + q), by one of the following “equivalent”

formulas:

Zr
pq/(Z

r−1
p−1,q+1 ∨Br−1

pq ), (20)

(Zr
pq ∨ Fp−1An)/(Br−1

pq ∨ Fp−1An), (21)

that are linked by a canonical isomorphism,

regularly induced from the first to the second

subquotient.

The first expression is used, for instance, in

Hilton–Wylie [8, Section 10.3], and Spanier [17,

9.1]. The second is used in Mac Lane’s “Homol-

ogy” [10, XI.3]. Weibel [19] uses both, in Sec. 5.4

(with a different notation).

And indeed, no problem can here arise from

using different formulas linked by canonical iso-

morphisms, because of the distributivity of the

system. But this is no longer true in a non-

distributive system like the bifiltered chain com-

plex [7], if we let its spectral sequences (derived

from the two filtrations) interact.

8. The Full Coherence Theorem

We end by mentioning, without proof, a more

complete form of our coherence theorem.

The proof can be found in the book [7], with

various other equivalent conditions and many

applications to the theory of spectral sequences.

The required setting is an extension of abelian

categories. A p-exact category, i.e. an exact cate-

gory in the sense of Puppe and Mitchell [16, 14,

3], is a category with a zero object, where every

map factorises as a cokernel (of some morphism)

followed by a kernel. The setting is selfdual, and

the existence of cartesian products is not assumed.

A p-exact category E is said to be distributive

if all its lattices of subobjects are distributive. The

main example is the category I of sets and partial

bijections, where every small distributive p-exact

category can be exactly embedded.

A non-trivial abelian category cannot be dis-

tributive; but all p-exact categories, including the

abelian ones, have a distributive expansion to which

the theorem below applies.

Coherence theorem of homological algebra

For a p-exact category E, the following conditions are

equivalent:

(i) canonical isomorphisms between subquotients of

the same object are closed under composition,

(ii) induced isomorphisms between subquotients

(induced by arbitrary homomorphisms, or even

by relations) are preserved by composition,

(iii) E is distributive,

(iv) the category of relations RelE is orthodox (i.e.

its idempotent endomorphisms are closed under

composition).
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(1984) 353–379.

[6] M. Grandis, On distributive homological algebra,
III. Homological theories, Cahiers Top. Géom. Diff.
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