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Abstract. We give a brief introduction to hyperbolic
geometry, including its genesis. Some familiarity with
high school calculus and co-ordinate geometry is all
that is assumed and most of the article should, in
principle, be accessible to beginning undergraduates.

1. Introduction

1.1. History

Euclid was the first to formalise geometry into an
axiomatic system. One of his axioms called the
parallel postulate has been the focus of a lot of
mathematical attention and work for almost two
millennia. It states:
Given a straight line L and a point x outside
it, there exists a unique straight line L′ passing
through x and parallel to L.

This postulate has certainly existed from at
least as far back as 200 BC and much effort
went in to try to prove it from the other ax-
ioms of Euclid. In ancient times, Proclus, Omar
Khayyam, Witelo, Gersonides, Alfonso, amongst
others made the attempt. In more recent times,
Saccheri, Wallis, Lambert, and even Legendre
failed in this attempt, with good reason as we
hope to show in this article.

To appreciate what this problem means, we
first state Euclid’s axioms (appearing in the first
book of Elements).

(1) A straight line may be drawn from any point
to any other point.

(2) A finite straight line may be extended con-
tinuously in a straight line.

(3) A circle may be drawn with any centre and
any radius.

(4) All right angles are equal.
(5) If a straight line falling on two straight lines

makes the interior angles on the same side
less than two right angles, the two straight
lines, if extended indefinitely, meet on the
side on which the angles are less than two
right angles.

It is the fifth postulate that is equivalent to
the parallel postulate stated above. The reason
why people tried to prove it from the rest of the
axioms is that they thought it was not “sufficiently

∗This is an expanded and revised version of an article with
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us to submit the revised version to APMN.

self-evident” to be given the status of an axiom,
and an “axiom” in Euclid’s times was a “self-
evident truth”. Almost two millennia passed with
several people trying to prove the fifth postulate
and failing.

Gauss started thinking of parallels about 1792.
In an 1824 letter to F A Taurinus, he wrote:
“The assumption that the sum of the three an-
gles (of a triangle) is smaller than two right an-
gles leads to a geometry which is quite different
from our (Euclidean) geometry, but which is in
itself completely consistent.” But Gauss did not
publish his work. Already in the 18th century,
Johann Heinrich Lambert introduced what are to-
day called hyperbolic functions and computed the
area of a hyperbolic triangle. In the 19th century,
hyperbolic geometry was extensively explored
by the Hungarian mathematician Janos Bolyai
and the Russian mathematician Nikolai Ivanovich
Lobachevsky, after whom it is sometimes named.
Lobachevsky published a paper entitled On the
principles of geometry in 1829–1830, while Bolyai
discovered hyperbolic geometry and published
his independent account of non-Euclidean geome-
try in the paper The absolute science of space in 1832.
The term “hyperbolic geometry” was introduced
by Felix Klein in 1871. See [2] and [4] for further
details on history.

To get back to our article, we restate the
parallel postulate, expanding it somewhat and
underscore the terms we will investigate.

Postulate 1.1. (Parallel Postulate) Given a straight
line L in a plane P and a point x on the plane P
lying outside the line L, there exists a unique straight
line L′ lying on P passing through x and parallel
to L.

Then the problem we address is:

Problem 1.2. Prove the Parallel Postulate 1.1 from
the other axioms of Euclidean geometry.

To properly appreciate the (rather unexpected)
solution to Problem 1.2 we need to investigate the
following keywords more thoroughly:

(1) straight line
(2) plane
(3) parallel.

1.2. Terms and definitions

Definition 1.3. The Euclidean plane is R
2
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equipped with the metric

ds2
= dx2

+ dy2.

We have suddenly sprung the new concept of
a metric on the unsuspecting reader. A word of
clarification is necessary to justify our assurance
in the Abstract that some familiarity with high
school calculus and co-ordinate geometry is all
that is assumed. We all know that distances in
the Cartesian plane are measured by the formula

d((x1, y1), (x2, y2)) = [(x1 − x2)2
+ (y1 − y2)2]

1
2

for points (x1, y1), (x2, y2) ∈ R2.
Definition 1.3 is just the infinitesimal form

of this formula. The reason why it is called a
metric is that it provides us a means of measuring
lengths of curves σ (thought of as smooth maps of
[0, 1] into R2) according to the formula

l(σ) =

� 1

0
ds =

� 1

0















�

dx

dt

�2

+

�

dy

dt

�2














1
2

dt (A)

for some parametrisation x = x(t), y = y(t) of the
curve σ.

We now turn to the notion of a straight line in
this context. A fact we are quite familiar with, but
whose proof is not quite trivial, is the following.

Proposition 1.4. Given two points (x1, y1), (x2, y2) ∈
R

2, the straight line segment between (x1, y1) and
(x2, y2) is the unique path that realises the shortest
distance (as per formula A) between them.

We shall not prove this here, but when we
turn to hyperbolic geometry we shall give the
proof of a corresponding statement in hyperbolic
geometry and leave the reader to modify it ap-
propriately to prove Proposition 1.4. Note that
the term straight line segment in Proposition 1.4
means straight line in the sense of Euclid.

Finally we give the precise meaning of the
word parallel.

Definition 1.5. Two bi-infinite straight lines are
said to be parallel if they do not intersect.

Here, by a bi-infinite straight line we mean
the result of extending a straight line segment in-
finitely in either direction, so that any subsegment
of it is a straight line.

Note: All the notions above boil down to the
single notion of a metric in Definition 1.3. It is
striking that all the features of Euclidean geom-
etry have this single structural definition at their
foundation. In the language of logic, R2 equipped
with the metric

ds2
= dx2

+ dy2

is called a model for Euclidean geometry. We shall
not go into this, though the real solution to Prob-
lem 1.2 involves at least an implicit investigation
of these foundational issues.

2. Metric Geometry

In this article, we shall be interested in a some-
what more general form of a metric than Defini-
tion 1.3. This will give us quite a general class
of “models”. We state this somewhat informally
below.

Definition 2.1. A metric on an open subset U of
the Euclidean plane R2 is a method of computing
arc lengths l(σ) as per the formula

ds2
= f (x, y)dx2

+ g(x, y)dy2.

Thus the length of σ will be given by the formula

l(σ) =

� 1

0
ds =

� 1

0
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dt (B)

for some parametrisation x = x(t), y = y(t) of the
curve σ.

An isometry I is a map that preserves the
metric, i.e. if I((x, y)) = (x1, y1) then

f (x, y)dx2
+ g(x, y)dy2

= f (x1, y1)dx2
1 + g(x1, y1)dy2

1.

The property of straight lines given by Propo-
sition 1.4 is then abstracted out to give the next
definition.

Definition 2.2. An arc σ in U equipped with the
metric above is said to be a geodesic if it locally
minimises distances, i.e. there exists ǫ > 0 such
that for a, b ∈ σ([0, 1]), if there is some arc of
length at most ǫ connecting a, b, then the subarc
of σ joining a, b is the unique path that realises
the shortest distance (as per formula (B)) between
them.

The definition of parallel lines 2.3 goes through
in this more general context by just replacing the
term straight line by the term geodesic.

Definition 2.3. Two bi-infinite geodesics are said
to be parallel if they do not intersect.

3. Hyperbolic Geometry

3.1. The model

A Model for hyperbolic geometry is the upper
half plane H = (x, y) ∈ R2, y > 0 equipped with the
metric

ds2
=

1

y2
(dx2
+ dy2). (C)

H is called the Poincare upper half plane in
honour of the great French mathematician who
discovered it.

Motivation, an aside: Without any motivation,
the model described above seems to have come
out of thin air. This is the only place where, during
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the course of this article, some more mathematical
background is necessary to fully appreciate what
is going on. The young reader is therefore encour-
aged to take the above model at face value and
skip this motivation.

Poincare who proposed the above model, came
to it from complex analysis. It is a fact that any
simply connected complex 1-manifold (whatever
that means) is essentially one of the following
three:

(1) The Riemann sphere Ĉ
(2) The complex plane C
(3) The upper half plane H = {z ∈ C : Im(z) > 0}.

Poincare came to hyperbolic geometry from
complex analysis and, suffice to say, in this context
the model for H is quite natural as one of three
possible models for a simply connected complex
1-manifold.

3.2. Geodesics and isometries

It is not hard to see that vertical straight lines
(given by x = k, a constant) are geodesics (see
Definition 2.2). Consider two points a = (k, u) and
b = (k, v) in H. Then any path σ from a to b
that is not vertical will have nonzero dx

dt at some
point. Then its length computed as per formula
(C) will be strictly greater than that of the path
P(σ), where P is the projection onto the vertical
line x = k, given by P(x, y) = (k, y). Hence as per
Definition 2.2, we have

Lemma 3.1. Vertical straight lines in H are geodesics.
In fact, the vertical segment between a, b is the unique
geodesic between a, b.

Now, we compute some explicit isometries
(see Definition 2.2).

Lemma 3.2. Define f : H → H by f (x, y) = (x + a, y)
for some fixed a ∈ R.

Define g : H → H by g(z) = R2

z
for some fixed R > 0,

where z denotes the complex conjugate of z.
Then f , g are isometries of H.

Proof. First note that f is given in real co-ordinates
and g is given in complex co-ordinates. To check
that f is an isometry, put x1 = x + a, y1 = y. Then
(since a is a constant) 1

y2 (dx2
+ dy2) = 1

y2
1

(dx2
1 + dy2

1)

and hence f preserves the metric given by formula
(C), i.e. f is an isometry. �

Next, to show that g is an isometry, we express
formula (C) in complex co-ordinates as

ds2
=

dzdz

Im(z)2
.

It is a simple calculation to show that if we put

z1 = g(z) = R2

z
, then dzdz

Im(z)2 =
dz1dz1

Im(z1)2 . This shows that
g is an isometry. �

Maps such as f are called parabolic translations
and those like g are called inversions. The map

g is an inversion about a semi-circle of radius R
centred at 0. A more geometric description of g
is as follows. Take a circle of radius R centred
at 0. Then every point in H lies on a unique ray
through 0. Let p ∈ H be on some such ray r. Then
g(p) is the unique point on r for which the product
of the radial co-ordinates of p and g(p) is R2.

We shall have need only for inversions in what
follows. These maps are the hyperbolic geome-
try analogues of reflections in plane Euclidean
geometry.

There is nothing special about the point 0 in
Lemma 3.2 for the map g. We might as well shift
the origin 0 to a point p on the real axis and con-
sider inversions about semi-circles centred at p.
Then essentially the same computation shows that
inversions about semi-circles of arbitrary radius R
centred on the real line are isometries. The reader
may refer to [1] and [3] for similar computations.

Next, from Definition 2.2, it follows that the
image of a geodesic under an isometry is another
geodesic. Hence images of vertical geodesics un-
der inversions are geodesics.

Now consider a semi-circle C1 with centre
at (a, 0) with radius R. Consider the semi-circle
C2 with centre at (a + R, 0) with radius 2R. Let
inversion in C2 be denoted by I2. Let l denote
the vertical geodesic x = (a − R). Then it is a
simple exercise in Euclidean geometry to show
that I2(l) = C1. We have thus finally established
the following.

Theorem 3.3. In the hyperbolic plane H, vertical
straight lines and semi-circular arcs with centre on
the real axis are geodesics.

Let L denote the collection of vertical straight
lines and semi-circular arcs with centre on the real
axis. Given any l ∈ L and any point p outside l on
H there are infinitely many l′ ∈ L through p such
that l ∩ l′ = ∅.

We are finally in a position to answer Question
1.2 adequately. There are models (H in the above
description) which satisfy all axioms of Euclidean
geometry except the parallel postulate.

Theorem 3.4. We have the following New Parallel
Postulate:
Given a geodesic L in H and a point x on H lying out-
side L, there exist infinitely many bi-infinite geodesics
L′ lying on H passing through x and parallel to L.

The careful reader will notice that we have
only violated the uniqueness part of the parallel
postulate in constructing H. Existence continues
to hold.

To end this section we mention the fact that
the collection L described above is the collec-
tion of all geodesics in H. The interested reader
can prove this using the uniqueness part of
Lemma 3.1.
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4. Fuchsian Groups and Closed
Hyperbolic Surfaces

We now come to the study of discrete subgroups
of the isometry group of the hyperbolic plane.
Poincaré initiated the study of these groups. An
octagon with suitable side identifications (see
Diagram 1 below) gives a genus two surface
topologically.

Diagram 1

This is just a topological picture. We want to
convert the flabby topological information into a
more precise geometric picture. We first suppose
that the above octagon is hyperbolic, i.e. it is
isometric to a piece of the hyperbolic plane. To
glue it as per the recipe given in the Diagram 1
above, we need to ensure two things:

(1) The sides labelled by the same letters are
geodesics of equal length.

(2) The angle sum obtained at the vertex to
which all the eight vertices of the octagon
are identified is equal to 2π.

Towards this, we first consider a more sym-
metric model of the hyperbolic plane, the Poincaré
disk. This is the unit disk in the complex plane

with the metric 4|dz|2

(1−|z|2)2 . It turns out that the
Poincaré disk is isometric to the upper half plane
with the hyperbolic metric.

Now consider an ideal hyperbolic octagon, i.e.
an octagon, all whose vertices are on the circle
at infinity. See Diagram 2.

The geodesics in this model are semi-circles
meeting the boundary circle at right angles. Since
adjacent sides (geodesics) both meet the boundary
circle at right angles, it follows that the internal
angles of an ideal octagon are all zero. Now
start shrinking the octagon slowly towards a very
small regular octagon in the Poincaré disk, ensur-
ing that the octagon is symmetric about the origin.
Then a very small regular hyperbolic octagon has
internal angles very close to the internal angles

Diagram 2

of a regular Euclidean octagon, which is 3π
4 . It

follows from the intermediate value theorem that
at some intermediate stage, all internal angles
equal π4 . Take the regular hyperbolic octagon with
all internal angles equal to π

4 and glue alternate
sides as per the recipe in Diagram 1.

Since all sides are equal, it follows that sides
labelled by the same letters are geodesics of equal
length. The angle sum obtained at the vertex to
which all the eight vertices of the octagon are
identified is equal to 8 × π4 = 2π. Thus the identi-
fication space is a hyperbolic genus two surface.
The isometries of the hyperbolic plane that iden-
tify sides labelled by the same letter (preserving
orientation) generate a discrete subgroup of the
isometry group of the hyperbolic plane, such that
the quotient of the hyperbolic plane by this group
is the hyperbolic genus two surface.

The above construction is immensely flexible.
We can vary lengths of sides and angles ensuring
only the conditions that sides labelled by the same
letters are geodesics of equal length and that the
angle sum obtained at the vertex to which all
the eight vertices of the octagon are identified
is equal to 2π. Thus we get continuously many
hyperbolic genus two surfaces by varying the
above construction.

5. Kleinian Groups and Thurston’s Work

In one dimension higher, we have hyperbolic
3-space H3

= {(x, y, z) : z > 0} equipped with the

metric ds2
=

dx2
+dy2

+dz2

z2 . Discrete subgroups of the
isometry group of hyperbolic 3-space are termed
Kleinian Groups. As in the two dimensional case,
one can construct an all-right hyperbolic dodec-
ahedron, i.e. a dodecahedron in hyperbolic space
such that

(1) All faces are totally geodesic regular hyper-
bolic pentagons.
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(2) All dihedral angles are right angles.

Gluing opposite faces of the dodecahedron by
a three-fifths twist we obtain a closed hyperbolic
3-manifold called the Seifert–Weber dodecahedral
space. The group of face-pairing transformations
generate a Kleinian group such that the quotient
of hyperbolic 3-space by this group is the Seifert–
Weber dodecahedral space.

Thurston’s Geometrisation Conjecture (proved
by Perelman) states roughly that a generic topo-
logical 3-manifold is hyperbolic. A slightly more
precise formulation is that any topological 3-
manifold can be canonically decomposed along
spheres and tori such that each resulting piece car-
ries a geometric structure. Also amongst geomet-
ric structures, a hyperbolic structure is generic.
The celebrated Poincaré Conjecture is a small
component of this conjecture. The first impetus
towards this conjecture was given by Thurston
himself, who, in his Fields’ Medal winning work
showed that a vast collection of topological

3-manifolds (the so-called Haken atoroidal ones)
carry a hyperbolic structure. We refer the reader
to [5] for this, amongst several other conjectures of
Thurston. Almost all these conjectures have now
been resolved affirmatively after three decades of
hard work by a number of mathematicians — a
tribute to the great insight that Thurston had.
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