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Abstract. In this short Letter we review recently ob-
tained results for discrete-time dynamical systems and
evolution algebras of sex linked inheritance. Moreover,
we discuss several open problems related to such
inheritance.

1. Introduction

Evolutionary theory is important to a proper un-
derstanding of living populations at all levels.
Thus the analysis of gene frequency arrays as-
suredly has a part to play in anthropological com-
parisons and observations of animal behaviour
patterns that may lead to a better quantification
of the genetics and environmental components
of behavioural traits. Mathematics, as the lan-
guage of quantitative measurement, is clearly cen-
tral to these pursuits. The relevant mathematics
undoubtedly requires hybridisation of nonlinear
analyses, compounded stochastic processes mod-
elling, innovative statistical analysis of complex
data, and the creative implementation of the gi-
gantic computer methodology and all its ramifi-
cations [9].

Some mathematical methods have been ap-
plied successfully to population genetics for a
long time. Even the quite elementary ideas used
initially proved amazingly effective. For exam-
ple, the famous Hardy–Weinberg law (1908) is
basic to many calculations in population genet-
ics. The mathematics in the classical works of
Fisher, Haldane and Wright was also not very
complicated but was of great help for the theo-
retical understanding of evolutionary processes.
More recently, the methods of mathematical ge-
netics have become more sophisticated. In use are
probability theory, stochastic processes, nonlinear
differential and difference equations and non-
associative algebras. First contacts with topology
have been established. Now in addition to the
traditional movement of mathematics for genetics,
inspiration is flowing in the opposite direction,
yielding mathematics from genetics. The book [12]
reflects to some degree both patterns but espe-
cially the latter one. A pioneer of this synthesis
was S N Bernstein. He raised and partially solved
the problem of characterising all stationary evo-
lutionary operators, and this work was continued
by Yu I Lyubich [12]. This problem has not been
completely solved, but it appears that only certain

operators devoid of any biological significance
remain to be addressed.

In [12], the dynamics of populations and their
formal analogue are also studied. When selection
is absent a very effective algebraic approach was
introduced by Reiersöl (1961). This approach was
extended by Lyubich (1971) to describe explicit
solutions of the general evolution equation. Some
more abstract algebraic-dynamical theory, were
discovered by Etherington (1939).

The dynamics of selection require different
methods. Here the leading role goes to Fisher’s
“fundamental theorem” concerning the increase
of mean fitness of a population due to natural
selection. An approach based on this theory uses
a relatively complicated “relaxation” technique to
establish the global convergence to equilibrium
under conditions more general than have been
previously achieved. Several topics which could
be studied using these methods: polyploidy, over-
lapping generations, migration, etc.

Recently in [18], a new type of evolution al-
gebra is introduced. This algebra also describes
some evolution laws of genetics and it is an alge-
bra E over a field K with a countable natural basis
e1, e2, . . . and multiplication given by eiei =

∑

j aijej,
eiej = 0 if i � j. Therefore, eiei is viewed as “self-
reproduction”.

There exist several classes of non-associative
algebras (baric, evolution, Bernstein, train,
stochastic, etc.), whose investigation has
provided a number of significant contributions to
theoretical population genetics. Such classes have
been defined different times by several authors,
and all algebras belonging to these classes
are generally called “genetic”. Etherington
introduced the formal language of abstract
algebra to the study of the genetics (see for
example, [2]). In recent years many authors
have tried to investigate the difficult problem
of classification of these algebras. The most
comprehensive references for the mathematical
research done in this area are [12, 13, 18, 20].

The paper [9] gives a comprehensive survey of
problems in evolutionary theory studied by math-
ematical methods, both with regard to past devel-
opments, the present state of the subject and prob-
able future trends. Many of the models considered
are actually within the scope of mathematical
population genetics, although the general ideas
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discussed have implications for a much wider
area. Anyone currently engaged in this field will
find the viewpoints expressed interesting, placing
the problems which are being studied extensively
today into a wider perspective. At the same time
this paper may stimulate further interest among
mathematicians in biological applications.

In very recent paper [7] several mathemat-
ical problems are formulated which suggested
by structural patterns present in biomolecular
assemblies.

In this short Letter we review recently ob-
tained results for discrete-time dynamical systems
and evolution algebras of sex linked inheritance.
Moreover, we discuss several open problems re-
lated to such inheritance. The next section con-
tains very interesting preliminaries from biology.
Section 3 is devoted to the results on free popula-
tion. In Sec. 4 we discuss sex linked populations.

2. Preliminaries from Biology

The action of genes is manifested statistically in
sufficiently large communities of matching indi-
viduals (belonging to the same species). These
communities are called populations [12]. The pop-
ulation exists not only in space but also in time,
i.e. it has its own life cycle. The basis for this
phenomenon is reproduction by mating. Mating
in a population can be free or subject to certain
restrictions.

A free population (or panmixia) means random
mating in the population. A panmictic population is
one where all individuals are potential partners.
This assumes that there are no mating restric-
tions, neither genetic or behavioural, upon the
population, and that therefore all recombination
is possible. The Wahlund effect assumes that the
overall population is panmictic [6].

In genetics, random mating involves the mating
of individuals regardless of any physical, genetic,
or social preference. In other words, the mating
between two organisms is not influenced by any
environmental, hereditary, or social interaction.
Hence, potential mates have an equal chance of
being selected. Random mating is a factor as-
sumed in the Hardy–Weinberg principle and is
distinct from lack of natural selection: in viabil-
ity selection for instance, selection occurs before
mating.

The whole population in space and time com-
prises discrete generations F0, F1, . . . The genera-
tion Fn+1 is the set of individuals whose parents
belong to the Fn generation. A state of a pop-
ulation is a distribution of probabilities of the
different types of organisms in every generation.

A sex-determination system is a biological sys-
tem that determines the development of sexual
characteristics in an organism. Most sexual or-
ganisms have two sexes. Occasionally there are

hermaphrodites in place of one or both sexes.
There are also some species that are only one
sex due to parthenogenesis, the act of a female
reproducing without fertilisation.

In many cases, sex determination is genetic:
males and females have different alleles or even
different genes that specify their sexual mor-
phology. In animals, this is often accompanied
by chromosomal differences. Genetic determination
is generally through chromosome combinations
of XY (for example: humans, mammals), ZW
(birds), X0 (in this variant of the XY system,
females have two copies of the sex chromo-
some (XX) but males have only one (X0). The
0 denotes the absence of a second sex chromo-
some. Generally in this method, the sex is de-
termined by amount of genes expressed across
the two chromosomes. This system is observed in
a number of insects, including the grasshoppers
and crickets of order Orthoptera and in cock-
roaches. A small number of mammals also lack
a Y chromosome, Z0 (lepidoptera), WXY (platy-
fishes). Moreover, some organisms have multiple
sex chromosomes: X1X2Y (for example, Hoplias
malabaricus), X1X2X3X4X5Y (for example, Tege-
naria ferruginea), X1X2X3X4X5Y1Y2Y3Y4Y5 (Or-
nithorhynchus anatinus), etc. Sexual differentia-
tion is generally started by a main gene, a sex
locus, then a multitude of other genes follow in a
domino effect.

In other cases, sex is determined by environ-
mental variables such as temperature. For example,
in some species of reptiles, including alligators,
some turtles, the tuatara, and a few birds, sex is
determined by the temperature at which the egg is
incubated during a temperature sensitive period.
For some, this is achieved by hotter temperatures
being one sex and cooler temperatures being the
other. For others, the extreme temperatures are
one sex and the middle temperature is the other.
Sex also can be determined by social variables (the
size of an organism relative to other members of its
population).

Environmental sex determination occurred be-
fore genetic; it is thought that a temperature-
dependent reptile was the common ancestor to
sex chromosomes. Some species, such as some
snails, practice sex change: adults start out male,
then become female. In tropical clown fish, the
dominant individual in a group becomes female
while the other ones are male, and blue head
wrasses are the reverse. In the marine worm
Bonellia viridis, larvae become males if they make
physical contact with a female, and females if they
end up on the bare sea floor. This is triggered
by the presence of a chemical produced by the
females, bonellin. Some species, however, have
no sex-determination system. Hermaphrodites in-
clude the common earthworm and certain species
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of snails. A few species of fish, reptiles, and
insects reproduce by parthenogenesis and are fe-
male altogether. There are some reptiles, such as
the boa constrictor and komodo dragon that can
reproduce sexually and asexually, depending if a
mate is available.

In some arthropods, sex is determined by infec-
tion, as when bacteria of the genus Wolbachia alter
their sexuality; some species consist entirely of ZZ
individuals, with sex determined by the presence
of Wolbachia. If a male ZZ is infected by the bac-
teria Wolbachia, ZZ + w, then it becomes female.
In this case there are three female genotypes: WZ,
WZ + w and ZZ + w.

Haemophilia is a group of hereditary genetic
disorders that impair the body’s ability to control
blood clotting or coagulation, which is used to
stop bleeding when a blood vessel is broken.

Other unusual systems: swordtail fish, the
Chironomus midge species, the Platypus has 10
sex chromosomes but lacks the mammalian sex-
determining gene SRY, meaning that the pro-
cess of sex determination in the Platypus re-
mains unknown. Zebrafish go through juvenile
hermaphroditism, but what triggers this is un-
known. The Platyfish has W, X, and Y chromo-
somes. This allows WY, WX, or XX females or
YY and XY males [17].

Remark 2.1. The details of some sex-
determination systems are not yet fully
understood. A search in MathSciNet gives
about 15 mathematical papers which are related
to sex determination models (see for example,
[3], [9], [10]). In papers [5], [15] we attempted to
introduce thermodynamic methods in biology.
In [19] an algebra associated to a sex change is
constructed.

3. Free Population (Panmixia)

In this section we shall give evolution operators
and algebras of a free population.

Consider a population consisting of m species.
Let x0

= (x0
1
, . . . , x0

m) be the probability distribu-
tion (where x0

i
= P(i) is the probability of i, i =

1, 2, . . . , m) of species in the initial generation, and
Pij,k the probability that individuals in the ith and
jth species interbreed to produce an individual k,
more precisely Pij,k is the conditional probability
P(k|i, j) that ith and jth species interbred success-
fully, then they produce an individual k.

In this section we consider models of free
population, i.e. there is no difference of sex and in
any generation the “parents” ij are independent,
i.e. P(i, j) = P(i)P(j) = x0

i
x0

j
. Then the probability

distribution x′ = (x′1, . . . , x′m) (the state) of the
species in the first generation can be found by

the total probability

x′k =
m
∑

i,j=1

P(k|i, j)P(i, j) =
m
∑

i,j=1

Pij,kx
0
i x0

j , k = 1, . . . , m .

(3.1)
This means that the association x0 → x′ defines
a map V called the evolution operator. The popu-
lation evolves by starting from an arbitrary state
x0, then passing to the state x′ = V(x0) (in the next
“generation”), then to the state x′′ = V(V(x0)), and
so on. Thus, states of the population described by
the following discrete-time dynamical system

x0, x′ = V(x0), x′′ = V2(x0), x′′′ = V3(x0), . . .
(3.2)

where Vn(x) = V(V(...V
︸����︷︷����︸

n

(x))...) denotes the n times

iteration of V to x.
Note that V (defined by (3.1)) is a quadratic

stochastic operator (QSO), and it is higher dimen-
sional if m ≥ 3. Higher dimensional dynamical
systems are important, but there are relatively few
dynamical phenomena that are currently under-
stood [1].

The main problem for a given dynamical sys-
tem is to describe the limit points of {x(n)}∞n=0 for
arbitrary given x(0).

In [4], we have discussed the recently obtained
results on the problem, and also gave several open
problems related to the theory of QSOs. See also
[12] for more detailed theory of QSOs. Moreover,
in [12] an evolution algebra A associated to the
free population is introduced and using this non-
associative algebra, many results are obtained
in explicit form, e.g. the explicit description of
stationary quadratic operators, and the explicit
solutions of a nonlinear evolutionary equation
in the absence of selection, as well as general
theorems on convergence to equilibrium in the
presence of selection.

The algebraA is defined as follows. Recall that
any vector x ∈ Rm can be written as x =

∑n
i=1 xiei

with {e1, . . . , em} the canonical basis on Rm with

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . ,

em = (0, 0, . . . , 0, 1) ∈ Rm.

Now introduce on Rm a multiplication defined
by

eiek =

m
∑

j=1

Pik,jej . (3.3)

Thus we identify the coefficients of inheritance
as the structure constants of an algebra A, i.e. a
bilinear mapping Rm × Rm to Rm, x × y → xy. The
general formula for multiplication is the extension
of (3.3) by bilinearity for multiplication:

xy =
m
∑

i,k,j=1

(Pik,jxiyk)ej . (3.4)
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In particular, the evolution operator defined in
coordinate form by (3.1) can be written as x′ =
V(x) = x2. See [12] for properties of the algebra A.

4. Bisexual Population

Type partition is called differentiation. The sim-
plest example is sex differentiation. In bisexual
population (BP) any kind of differentiation must
agree with the sex differentiation, i.e. all the or-
ganisms of one type must belong to the same sex.
Thus, it is possible to speak of male and female
types.

Evolution operator. In this subsection, following
[12], we describe the evolution operator of a BP.

Assuming that the population is bisexual, we
suppose that the set of females can be partitioned
into finitely many different types indexed by
{1, 2, . . . , n} and, similarly, that the male types are
indexed by {1, 2, . . . , ν}. The number n+ ν is called
the dimension of the population. The population
is described by its state vector (x, y) in Sn−1 × Sν−1,
the product of two unit simplexes in Rn and Rν

respectively. Vectors x and y are the probability
distributions of the females and males over the
possible types:

x ∈ Sn−1
=















x ∈ Rn : xi ≥ 0,
n
�

i=1

xi = 1















;

y ∈ Sν−1
=















y ∈ Rν : yi ≥ 0,
ν
�

i=1

yi = 1















.

Denote S = Sn−1 × Sν−1. We call the partition
into types hereditary if for each possible state
z = (x, y) ∈ S describing the current generation,
the state z′ = (x′, y′) ∈ S is uniquely defined
describing the next generation. This means that
the association z �→ z′ defines a map V : S → S
called the evolution operator.

For any point z(0) ∈ S the sequence z(t)
=

V(z(t−1)), t = 1, 2, . . . is called the trajectory of z(0).

Let P
(f )

ik,j
and P(m)

ik,l
be inheritance coefficients

defined as the probability that a female offspring
is type j and, respectively, that a male offspring is
of type l, when the parental pair is ik (i, j = 1, . . . , n;
and k, l = 1, . . . , ν). We have

P
(f )

ik,j
≥ 0,

n
�

j=1

P
(f )

ik,j
= 1; P

(m)

ik,l
≥ 0,

ν
�

l=1

P
(m)

ik,l
= 1 . (4.1)

Let z′ = (x′, y′) be the state of the offspring
population at the birth stage. This is obtained
from inheritance coefficients as

x′j =
n,ν
�

i,k=1

P
(f )

ik,j
xiyk; y′l =

n,ν
�

i,k=1

P
(m)

ik,l
xiyk . (4.2)

We see from (4.2) that for a BP the evolution
operator is a quadratic mapping of S into itself.

The dynamics of this operator has not been
completely studied yet.

See [14] for some results about the dynamical
system generated by the operator (4.2).

Evolution algebra of BP. Now following [11], we
give an algebra structure on the vector space Rn+ν

which is closely related to the map (4.2).
Consider {e1, . . . , en+ν} the canonical basis on

R
n+ν and divide the basis as e

(f )

i
= ei, i = 1, . . . , n

and e(m)
i
= en+i, i = 1, . . . , ν.

Now introduce on Rn+ν a multiplication de-
fined by

e
(f )

i
e

(m)

k
= e

(m)

k
e

(f )

i
=

1

2



















n
�

j=1

P
(f )

ik,j
e

(f )

j
+

ν
�

l=1

P
(m)

ik,l
e

(m)

l



















,

e
(f )

i
e

(f )

j
=0, i, j=1, . . . , n; e

(m)

k
e

(m)

l
=0, k, l=1, . . . , ν .

(4.3)
The general formula for the multiplication

is the extension of (4.3) by bilinearity, i.e. for
z, t ∈ Rn+ν,

z = (x, y) =
n
�

i=1

xie
(f )

i
+

ν
�

j=1

yje
(m)
j

,

t = (u, v) =
n
�

i=1

uie
(f )

i
+

ν
�

j=1

vje
(m)
j

using (4.3), we obtain

zt =
1

2

n
�

k=1



















n
�

i=1

ν
�

j=1

P
(f )

ij,k
(xivj + uiyj)



















e
(f )

k

+

1

2

ν
�

l=1



















n
�

i=1

ν
�

j=1

P
(m)

ij,l
(xivj + uiyj)



















e
(m)

l
. (4.4)

From (4.4) and using (4.2), in the particular case
that z = t, i.e. x = u and y = v, we obtain

zz = z2
=

n
�

k=1



















n
�

i=1

ν
�

j=1

P
(f )

ij,k
xiyj



















e
(f )

k

+

ν
�

l=1



















n
�

i=1

ν
�

j=1

P
(m)

ij,l
xiyj



















e
(m)

l
= V(z) (4.5)

for any z ∈ S.
This algebraic interpretation is very useful. For

example, a BP state z = (x, y) is an equilibrium
(fixed point, V(z) = z) precisely when z is an
idempotent element of the set S.

If we write z[t] for the power ( · · · (z2)2 · · · ) (t
times) with z[0] ≡ z then the trajectory with initial
state z is Vt(z) = z[t].

The algebra B = BV generated by the evolution
operator V (see (4.2)) is called the evolution algebra
of the bisexual population (EABP).

Remark 4.1. 1. If a population is free then the male
and female types are identical and, in particular
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n = ν, the inheritance coefficients are the same for
male and female offsprings, i.e.

Pik,j = P
(f )

ik,j
= P

(m)

ik,j
.

The evolution algebra A associated with the
free population is commutative when the condi-
tion of symmetry Pik,j = Pki,j is satisfied, but it is
not in general associative. In [11] we showed that
algebra B of bisexual population is commutative
without any symmetry condition. Hence the alge-
bra A is a particular case of the algebra B.

2. It is easy to see that the EA introduced in
[18] is different from EABP, B.

3. The algebra B is a natural generalisation of
a zygotic algebra for sex linked inheritance (see [2,
8, 13, 20]).

In [11], the basic properties of the algebra B are
studied. We proved that this algebra is commuta-
tive (and hence flexible), not associative and not
necessarily power associative. We showed that B
is not a baric algebra, but a dibaric algebra and
hence its square is baric. Moreover, the algebra
is a Banach algebra. The set of all derivations
of the algebra is described. We found necessary
conditions for a state of the population to be
a fixed point or a zero point of the evolution
operator (4.2) which corresponds to the algebra
B. We also established upper estimate of the limit
points set for trajectories of the evolution operator
(4.2). Using the necessary conditions a detailed
analysis of a special case of the evolution algebra
(bisexual population of which has a preference
on type “1” of females and males) is given. For
such a special case the full set of idempotent
elements and the full set of absolute nilpotent
elements are obtained. These investigations are
only at starting point, the algebra B has not been
completely studied yet.

Gonosomal evolution operator. As it was men-
tioned above in many cases, the sex determination
is genetic, in particular, it is controlled by two
chromosomes called gonosomes.

Suppose that the set of female types is
{1, 2, . . . , n} and the set of male types is {1, 2, . . . , ν}.

Let γ
(f )

ik,j
and γ

(m)

ik,l
be some inheritance coeffi-

cients (not necessary probabilities) with

n
∑

j=1

γ
(f )

ik,j
+

ν
∑

l=1

γ
(m)

ik,l
= 1 . (4.6)

Note that the condition (4.1) is a particular case of

the condition (4.6) which is obtained when γ
(·)
ik,j
=

1
2 P

(·)

ik,j
≥ 0.

Consider an evolution operator W : Rn+ν →

R
n+ν defined as

x′j = 2
n,ν
∑

i,k=1

γ
(f )

ik,j
xiyk; y′l = 2

n,ν
∑

i,k=1

γ
(m)

ik,l
xiyk . (4.7)

This operator is called gonosomal evolution
operator.

Genosomal algebra. An algebra G is genosomal

(see [19]) if there is a basis B = {e
(f )

i
}n
i=1
∪{e

(m)
i
}ν
i=1

on
G such that for every 1 ≤ i, j ≤ n and 1 ≤ p, q ≤ ν,
we have

e
(f )

i
e

(m)
p = e

(m)
p e

(f )

i
=

n
∑

j=1

γ
(f )

ip,j
e

(f )

j
+

ν
∑

l=1

γ
(m)

ip,l
e

(m)

l
,

e
(f )

i
e

(f )

j
=0, i, j=1, . . . , n; e

(m)

k
e

(m)

l
=0, k, l=1, . . . , ν ,

(4.8)
where γ

(·)

ij,k
satisfies (4.6).

Remark 4.2. Note that operator (4.7) describes
evolution of a haemophilia (a lethal recessive X-
linked disorder: a female carrying two alleles
for haemophilia dies). The dynamical systems
generated by gonosomal operator (4.7) have not
been studied yet. In [16] a similar operator is
considered. Some constructions of the genosomal
algebra G are given in [19].
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