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1. Introduction

We have to be willing to wrestle with para-

dox in pursuing understanding.

— Harold Evans

This article presents an introduction to some of

the fascinating paradoxes that arise in logic and

the foundations of mathematics. The study of

paradoxes spans a recorded history of nearly two

thousand six hundred years of intellectual stud-

ies in philosophy, mathematics, logic, and other

disciplines. It is not surprising that the number of

known paradoxes is quite large, and we can only

touch upon a tiny fraction of them in this article.

However, we try to discern a pattern even among

the few paradoxes that we do present, and also

point out several connections between paradoxes

and the proofs of a number of important theorems

in mathematics.

A bird’s eye view of the paradoxes shows

recurrent use of certain features such as self-

reference, indexicals, negation, and circularity

among others, and also the prevalence of certain

patterns of reasoning. A closer look at the for-

mulations of the paradoxes shows that some of

them consciously restrict themselves, as it were,

to the use of a smaller palette of such features

and yet succeed in the formulation of the paradox.

Such formulations have a greater impact than

those formulations which are prodigal with basic

features, since they are a clear demonstration of

the fact that the absence of the certain features

in the underlying theory is no guarantee of their

eventual freedom from paradox.

The connections between paradoxes and

proofs of mathematical theorems arises due to

the fact that there are several similarities and

common elements between the formulation and

analysis of paradoxes on the one hand and re-

ductio ad absurdum proofs of various theorems

in mathematics on the other hand. We indicate,

very briefly, some of the interesting connections

that have been intensely explored by many other

mathematicians.

2. Paradox and Circularity

How wonderful that we have met with a

paradox. Now we have some hope of making

progress.

— Niels Bohr

Paradoxes may be classified into two basic types

— logical paradoxes and semantic paradoxes.

Logical paradoxes involve notions only from the

theory of sets. The most well known among the

logical paradoxes is Russell’s paradox [3] from Set

theory:

The set of all sets that are not members of them-

selves is both a member of itself, and also not a member

of itself.

Other examples of logical paradoxes are Can-

tor’s paradox and Burali-Forti’s paradox. Unlike

logical paradoxes, the semantic paradoxes make

use of notions which do not occur in the standard

language of set theory. In this article, we will focus

on some semantic paradoxes.

2.1. Grelling’s paradox

There are some adjectives that describe them-

selves and some that do not. “English” is an En-

glish word; while “French” is not a French word.

“Polysyllabic” is polysyllabic; but “monosyllabic”

is not monosyllabic. Call all adjectives that de-

scribe themselves “autological”. Call all adjectives

that do not describe themselves “heterological”.

Grelling’s paradox [3] is brought about by the

question: Is “heterological” heterological? And the

answer is: It is if only if it is not.

Grelling’s paradox shows that the words “au-

tological” and “heterological” do not form two

well-defined categories into which all adjectives

fall. It demonstrates that natural language does

not necessarily partition all objects of thought

into well-defined categories that will stand up to

arbitrary logical scrutiny. Grelling’s paradox can

be translated into Russell’s paradox. Identify each

adjective with the set of objects to which that

adjective applies. Thus an autological word is a

set, one of whose elements is the set itself. The
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question of whether the word “heterological” is

heterological becomes the question of whether the

set of all sets not containing themselves contains

itself as an element.

2.2. Epimenides’s paradox

The Epimenides’s paradox is also known as the

Liar’s paradox. The very first person known to

contemplate the Liar’s paradox [4] was the Greek

philosopher Eubulides of Miletus who said “A

man says that he is lying. Is what he says true or

false?.” One of the simplest ways of formulating

the liar’s paradox, is by the statement: This sen-

tence is false.

It might seem at first that a sentence must

directly refer to its own truth value, in order to

construct a paradox. But this is not necessary. It

is possible to avoid having a sentence directly

refer to its own truth value, and still construct

the paradox using a pair of sentences:

The following sentence is true.

The preceding sentence is false.

Neither of the above sentences refer to their own

truth values, but together they construct the Liar’s

paradox.

The Liar’s paradox, when it is removed from

the domain of truth to that of provability, is closely

associated to Gödel’s Incompleteness Theorem

[5].

2.3. Quine’s paradox

Willard Quine [3] showed that it is possible to

avoid direct self-reference, as embodied e.g. in the

word “this”, and yet construct the liar’s paradox

in a single sentence, as follows:

“yields falsehood when appended to its own quotation”

yields falsehood when appended to its own quotation.

Quine’s paradox is an algorithm for construct-

ing yet another sentence. Say X ≡ yields false-

hood when appended to its own quotation. Then X’s

quotation ≡ “yields falsehood when appended to its

own quotation”. X appended to X’s quotation gives

“yields falsehood when appended to its own quotation”

yields falsehood when appended to its own quotation.

In other words, the sentence says that it is false.

The liar’s paradox once again!

2.4. Berry’s paradox

Berry’s paradox was published in 1908 by

Bertrand Russell [3]. It reads: The smallest positive

integer which to be specified requires more characters

than there are in this sentence.

Does this sentence specify a positive integer?

The sentence has 114 characters (counting spaces

between words and the period but not the quota-

tion marks). Yet it supposedly specifies an integer

that, by definition, requires more than 114 char-

acters to be specified. This is clearly paradoxical.

It can also rewritten as: The smallest positive

integer that cannot be defined in less than fourteen

words. It is reasonable to assume that this is a spec-

ification for a number. There are a finite number

of sentences of fewer than fourteen words, and

some finite subset of them specify unique positive

integers. So there is clearly some positive number

that is the smallest integer not in that finite set.

But the Berry sentence itself is a specification for

that number in only thirteen words.

Berry’s paradox is the starting point for the

proof of a result in the area of algorithmic infor-

mation theory, called Chaitin’s theorem [1], which

uses programs or proofs of bounded lengths to

construct a rigorous version of this paradox. It is

also closely related to the notions of Kolmogorov

complexity and Martin-Löf randomness.

2.5. Löb’s paradox

Löb’s paradox [6] shows that it is possible to

derive any arbitrary sentence from a sentence

with self-reference and some apparently innocu-

ous logical deduction rules.

Let A be any sentence. Let B be the sentence:

“If this sentence is true then A”. So, B asserts: “If B

is true, then A”.

Now consider the following argument: As-

sume B is true (hypothesis); then by B, since B

is true, A holds. This argument shows that, if B

is true, then A. But this is exactly what B asserts.

Hence B is true. Therefore, by B, since B is true,

A is true. Thus, every sentence is true.

Löb’s paradox has close connections to Löb’s

theorem [6] in provability logic. Löb’s theorem

states that:

(PA ⊢ Bew(#P)→ P)→ (PA ⊢ P)

where PA denotes Peano Arithmetic, Bew(#P)

means that the formula with Gödel number P is

provable, and the symbol ⊢ stands for provability.

Löb’s theorem in provability logic states that, in a

theory with Peano arithmetic, for any formula P,
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if it is provable that “if P is provable then P”, then

“P is provable”. Provability logic abstracts away

from the details of encodings used in Gödel’s

incompleteness theorems. This is achieved by ex-

pressing the provability of φ in the given system

in the language of modal logic, by means of the

modality �φ. Löb’s theorem is formalised by the

axiom:

�(�P→ P)→ �P

known as the Gödel–Löb axiom. It is sometimes

also formalised by means of an inference rule that

infers �P from �(�P→ P).

2.6. Curry’s paradox

Haskell Curry [2], in 1942, was the first to show

that the negation operator is not a necessary

element in formulating Russell-type paradoxes.

Curry’s paradox refers to a family of paradoxes,

which can be formulated in any language which

satisfies various sets of conditions. One such set is

as follows: The language must contain apparatus

which lets it refer to, and talk about, its own

sentences (such as quotation marks, names, or

expressions like “this sentence”). The language

must contain its own truth-predicate: that is, the

language, call it “L”, must contain a predicate

meaning “true-in-L”, and the ability to ascribe this

predicate to any sentence.

Set theories which allow unrestricted compre-

hension satisfy the required conditions. In such

set theories we can prove any logical statement Y

from the set

X ≡ {x|x ∈ x→ Y} .

The proof proceeds as:

1. X ∈ X ⇔ (X ∈ X → Y) (Defn. of X)

2. X ∈ X → (X ∈ X → Y) (from 1)

3. X ∈ X → Y (from 2 and contraction)

4. (X ∈ X → Y)→ X ∈ X (from 1)

5. X ∈ X (from 3 and 4)

6. Y (from 3 and 5)

The term contraction is step 3 refers to a standard

rule of inference, which says that from a statement

of the form P→ (P→ Q), we can infer P→ Q.

Note that unlike Russell’s paradox, this para-

dox does not depend on what model of negation

is used, as it is completely negation-free. There are

various systems of logic such as paraconsistent

logics which place restrictions on the use of the

negation operator, thereby managing to avoid

Russell’s paradox easily. However, these systems

still need to take care to avoid falling into Curry’s

paradox. The resolution of Curry’s paradox is

often a contentious issue because nontrivial res-

olutions are difficult and unintuitive.

2.7. Zwicker’s paradox

William Zwicker formulated the Hypergame

paradox [11] in the setting of game theory. As a

preliminary to formulating the paradox, we need

the notion of a finite game.

A two-person game may be defined to be finite

if it satisfies the following conditions:

(i) Two players, A and B, move alternately, A

going first. Each has complete knowledge of

the other’s moves.

(ii) There is no chance involved.

(iii) There are no ties, i.e. when a play of the

game is complete, there is one winner.

(iv) Every play ends after finitely many moves.

We now define a two-person game called Hy-

pergame with the following rules:

(i) On the first move, player A names any finite

game F (called the subgame).

(ii) The players then proceed to play F, with B

playing the role of A while F is being played.

(iii) The winner of the play of the subgame is

declared to be the winner of the play of

Hypergame.

Zwicker’s Hypergame paradox is brought out

by the question: Is Hypergame finite? As Hyper-

game satisfies the four conditions required for

finite games, it is finite. If Hypergame is finite

then player A can choose Hypergame as the finite

game F of the first move. Now player B can name

Hypergame as the first move. This process can

lead to an infinite play, contrary to the assumption

that Hypergame is finite.

2.8. Mirimanoff’s paradox

This was formulated by Dmitri Mirimanoff in set

theory [10]. It is also called the paradox of the

class of all grounded classes.

A class X is said to be a grounded class when

there is no infinite progression of classes X1, X2,

. . . (not necessarily all distinct) such that . . . ∈ X2

∈ X1 ∈ X.
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Let Y be the class of all grounded classes. Mir-

imanoff’s paradox is brought out by the question:

Is Y itself grounded? Let us assume that Y itself

is a grounded class. Hence Y ∈ Y and so we have

. . .Y ∈ Y ∈ Y ∈ Y contrary to groundedness of

Y. Therefore Y is not a grounded class. If on the

other hand Y is not grounded, then there is an

infinite progression of classes X1, X2, . . . such that

. . . ∈ X2 ∈ X1 ∈ Y. Since X1 ∈ Y, X1 is a grounded

class. But then . . . ∈ X2 ∈ X1, which means X1 in

turn is not grounded, which is impossible since

X1 ∈ Y.

3. Paradox Without Circularity

If you try to fail, and succeed, which have

you done?

— George Carlin

All known paradoxes in logic seem to require

circularity in an unavoidable way. Each of them

use either direct self-reference, or indirect loop-

like self-reference. Yablo’s paradox [8] was the

first demonstration that self-reference is not a

necessary condition for the construction of para-

doxical sentences. Yablo’s paradox is a non-self-

referential Liar’s paradox.

3.1. Yablo’s paradox

Consider the following infinite sequence of sen-

tences Si where the indices “i, j, k” range over

natural numbers:

(Si) : For all j > i, Sj is false .

Note that, in the above sequence of statements,

each statement quantifies only over statements

which occur later in the sequence. Now suppose

Sk is true for some k. Then Sk+1 is false, and so

are all subsequent statements. As all subsequent

statements are false, Sk+1 is true, which is a con-

tradiction. So Sk is false for all k. Looking at any

particular i, this in turn means that Si in fact holds,

which is a contradiction.

It turns out that there are intimate connec-

tions between Yablo’s paradox and generalisa-

tions Cantor’s theorem in set theory, leading to

alternate proofs of Cantor’s theorem [7].

4. Conclusion

Such welcome and unwelcome things at once

’Tis hard to reconcile.

— William Shakespeare

This article was meant to serve as a taster for

the vast cornucopia of fascinating paradoxes [3]

that arise in the study of logic and foundations

of mathematics. Our listing of the paradoxes was

certainly not meant to be exhaustive, and even the

ones we mentioned are dealt with in much more

detail and also in more unified ways in several

other places in the literature [9].

Along with some of the paradoxes, we also

briefly indicated connections with the proofs of

some fundamental theorems. The close connec-

tions between paradoxes and proofs may indicate

that the paradoxes could serve as springboards

for the proofs of several other interesting theo-

rems in mathematics.

Now that we have reached the concluding

paragraph of our article devoted to paradoxes,

it is time to explain the title. The phrase vicious

circle is a standard term from logic which refers

to a reasoning pattern where the hypothesis is

used to prove the conclusion and the conclusion

is in turn used to prove the hypothesis, and by

this circularity often leads to a paradox. On the

other hand, the phrase vicious queue was invented

just for the purposes of this article. What could it

possibly mean? Let the reader ponder.
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