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A Short Introduction to
Self-Similar Groups

Murray Elder∗

Abstract. Self-similar groups are a fascinating area of

current research. Here we give a short, and hopefully

accessible, introduction to them.

1. Introduction

root

0 1

00 01 10 11

000001010011100101110111

The figure above shows (part of) the infinite rooted
binary tree, T. The root is the node (or vertex) at
the top, and each node has exactly two nodes
below it joined by an edge. It goes on forever
down the page. We have labelled each node with
a binary number in a systematic way — if w is a
binary string labelling a node, then the two nodes
below it joined by an edge are labelled w0 and w1.

An automorphism of T is a bijective map from the
nodes to the nodes which preserves adjacencies,
meaning if two nodes are joined by an edge, then
the nodes they map to are again joined by an
edge. This definition works for any graph, but
we’ll stick with T for now.

Before we give an example, here is a convention
which will help describe automorphisms of T.
Drawing ∗ at node labelled by w (some binary
string) means exchange the subtree with root w0
and the subtree with root w1, as indicated here:

∗

w0 w1

w00 w01 w10 w11

w

w1 w0

w10 w11 w00 w01

Once the move is performed we remove the ∗,
and we can verify that with this definition, if
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an automorphism has several ∗s then it doesn’t
matter in which order they are performed.

Now for an example. Define a to be the auto-
morphism of T which fixes the root, sends nodes
labelled 0w to 1w, and nodes labelled 1w to 0w,
where w is any binary string (possibly empty).
The tree on the right shows what T looks like after
a is applied.

∗

0 1

00 01 10 11

000001010011100101110111

root

1 0

10 11 00 01

100101110111000001010011

Applying a twice puts T back as it started, so
we say that aa is the same as the map that does
nothing to the tree. We call the map which leaves
the tree unchanged the identity, and denote it by
the letter e. Note that if a and b are automorphisms
of T, the notation ab means apply a first then b.

For example, if b is the automorphism given by

root

0 ∗

00 01 10 11

000001010011100101110111

then the reader can check that ab sends the node
labelled 00 to position 11 while ba sends it to 10.

The representation of an automorphism of T
by T decorated by ∗s is called a portrait of the
automorphism. Note that every automorphism of
T can be expressed using this notation (possibly
with infinitely many ∗s).

The inverse of an automorphism x is an
automorphism y such that xy = e( = yx).
Since automorphisms are bijective maps, they
have inverses.

If G is a set of automorphisms of T and their
inverses, such that for each x, y ∈ G the products
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xy and yx are also in G, then the algebraic object
we obtain is called a group.1

A good way to ensure the property that products
of G stay in G is to take a set of automorphisms,
say a and b, their inverses (which in this case
are the same), and let G be the set of all finite
products of these automorphisms. In this case we
say G is generated by the set {a, b}, and a and b are
the generators. Whenever a group is generated by
a finite set of elements (automorphisms), we call
it a finitely generated group.

Here is another way to define automorphisms.
Let w be a binary string. The map a sends the
node labelled 0w to position 1w, and the node
labelled 1w to 0w, so we can describe it using the
following rules:

a(0w) = 1.e(w), a(1w) = 0.e(w),

where e(w) means apply the identity map (do
nothing) to the suffix w. More interesting are the
rules describing b:

b(0w) = 0.e(w), b(1w) = 0.a(w).

The first rule just says that nodes on the left
subtree of the root are not changed, but the
second rule says if a node label starts with 1,
apply a to the suffix of the label. Note that the
rules for b uses a and e, and the rules for a
only uses e, so the set {a, b, e} of automorphisms
can be described by a self-referencing or self-
similar set of rules. Products of a and b can
also be expressed with rules of this form, for
example ab(0w) = b(1.e(w)) = 1.(ea(w)) (i.e. apply
e first to w then a), and ba(0w) = a(0.e(w)) = 1.ee(w).

Definition 1.1. Let G be a group of automor-
phisms of T. Then G is a self-similar group if for
each g ∈ G, each x ∈ {0, 1}, and each binary
string w, there is a y ∈ {0, 1} and a h ∈ G such
that

g(xw) = y.h(w).

See [6] for more details. Note that the definition
easily extends to groups of automorphisms of
rooted n-ary trees, but again we will stick with
binary trees for this paper.

2. Automata

Another way to describe automorphisms of T is
by an automaton. Here is an example:

1Groups are not just sets of automorphisms of T — they can
be the configurations of a Rubik’s cube, automorphisms of
graphs other than T, braids, and maps of the real line to itself.
A group is just a set with a multiplication defined on it, so that
products of things in the set are also in the set, such that the
multiplication is associative, it has some identity (like e) and
each element has an inverse (each x has a y so that xy = e).

x e
0/1

1/0

0/0

1/1

This automaton has two states labelled e and x.
If we start at the state x and read the string 010,
we follow the edge labelled 0/1, replacing the first
letter of the string by 1, then from the state e we
follow the edge 1/1, replacing the second letter
1 by 1, then (since we are still in the state e) we
follow 0/0 and keep the third letter as 0. So the
edge label tells us how to rewrite the next letter of
the string, and the state tells us what to do with
the suffix of the string. If we start at the state e
and read a string, the string stays the same.

Exercise 2.1. Draw the portrait of the automor-
phism x in this example.2

Exercise 2.2. Draw the automaton encoding the
rules for a and b in the previous section.

Exercise 2.3. If you know some basic group the-
ory, do you recognise the group generated by {x}3

and the group generated by {a, b}?

3. Grigorchuk’s Group

Here is an example which really kicked off the
theory of self-similar (or automaton) groups. We
start with the automaton describing the self-
similar rules for five actions.

c

e

a b

d

0/0

0/0

0/0

1/00/1

0/0

1/1

1/1

1/1

1/1

If we start at state a, we switch the first letter of
the string, then move to state e for the rest of the
string. So a is the same action as described at the
start (while b isn’t, since it sends 00 to 01).

Exercise 3.1. Write the self-similar rules for
a, b, c, d by reading off the automaton.

Here are portraits of b, c and d (the period 3
pattern keeps going all the way down).

2Solutions for all the exercises can be found at
www.austms.org.au/gazette.
3Hint: think of xn acting on w as doing something to a binary
number (written backwards).
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∗

∗

∗

∗

∗

∗

∗

∗

Exercise 3.2. Using the portraits, or otherwise,
work out what bb, cc, dd and bc do. Which au-
tomorphisms are they the same as?

The Grigorchuk group is the self-similar group
generated by a, b, c, d. If you did the exercises
right, you would have found some relations be-
tween letters. Each generator done twice is e, and
bc is the same as d. It follows from these facts
that any product can be written more efficiently
by never writing aa and never putting two letters
b, c, d next to each other (since bc = d, bd = c,
cd = b). That is, every product in the group can
be reduced to something of the form ax1ax2 . . . or
x1ax2a . . . where xi = b, c or d.

Exercise 3.3. Show that adad is the same automor-
phism as dada.

A finitely generated group G is said to be finitely
presented if a finite number of relations, say u1 =

v1, . . . , un = vn where ui and vi are finite products
of generators (or inverses of generators), suffice to
show equality between arbitrary products of gen-
erators. Even though we have found a few rela-
tions that the generators a, b, c, d for Grigorchuk’s
group satisfy, like aa = bb = cc = dd = e, bc =
d, adad = dada, it is known that Grigorchuck’s
group is not finitely presented.

4. Word Problem

The word problem for a finitely generated group
is the following question: given a word (or finite
product) of generators, is the product equal to
the identity element or not? In the case of groups
of automorphisms of T, this is the same as asking
if a product of generators puts T back in its
original configuration. For example, adadadadad
does nothing to the tree, so the answer on this
input is yes.4

Here is an algorithm (given by Grigorchuk)
to solve the word problem for his group. Write
the input word in the form ax1ax2 . . . or x1ax2a . . .
where xi ∈ {b, c, d}. Count the number of a letters.
If it is odd, we know that the automorphism it
represents switches the nodes 0 and 1, so this
word is not the identity.

So suppose the number of a letters is even. If the
word starts with a, write it as (ax1a)x2(ax3a)x4 . . . ,
and otherwise write it as x1(ax2a)x3(ax4a) . . . . Now

4This follows from Exercise 3.3 — asking if u = v in a group is
the same as asking if uv−1

= e.

we know the word does not switch the two nodes
at level 1. What does it do to the subtree hanging
from the node 0? The subword (aba) has the
effect of doing what c does to the subtree (check
this — a moves the subtree over to the right side,
then b acts by switching down the right side of
the subtree, then a puts it back). Similarly we can
work out that (aca) acts like d on the subtree, and
(ada) acts like b. In a very similar way, we can
work out what b, c and d do to the subtree — b
and c flip it (so act like a) and d does nothing to it.

So to work out what the input word does
to the subtree hanging from 0, we rewrite
(ax1a)x2(ax3a)x4 . . . or x1(ax2a)x3(ax4a) . . . by re-
placing b and c by a, and d by e, and aba, aca, ada
by c, d, b respectively. It’s a similar story for the
subtree hanging from node 1.

Exercise 4.1. Work out the replacement rules for
b, c, d, aba, aca, ada for the right subtree.

We should now be able to see how this will
turn into a recursive algorithm — given a
subtree and a word in a, b, c, d acting on it,
count the number of as, and if it is even, see
what happens to the two subtrees (under two
rewritten (and shorter) words).

A good exercise is to figure is out the worst-case
time (and space) complexity of the algorithm. A
variation of this algorithm works for a large class
of self-similar groups; see [6].

In general, the word problem for an arbitrary
finitely generated group is an undecidable
problem — there are even finitely presented
groups for which, if we could decide if a given
word is the same as the identity, then we could
solve the Halting problem for Turing machines,
which is unsolvable (see for example [5] for more
details).

5. Growth

Grigorchuk’s group is famous because it was
the first example of a group having intermediate
growth. For a group G generated by a finite set
of elements, define the growth function f : N → N
by f (n) where f (n) is the number of elements of
G that are equal to some product of generators
of length at most n; the maximum value this
function could attain is exponential in the num-
ber of generators, since there are kn strings of k
letters of length n. Milnor asked if a group could
have a growth function that is superpolynomial,
but subexponential (like f (n) = e

√
n), which is

called intermediate, and Grigorchuk showed that
his group has an intermediate growth function.
Two excellent sources in which to read accounts
of this are [3] and [4].
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Open Question 5.1. Is there a finitely presented
group of intermediate growth?

6. Schreier Graphs

Whenever we have a group G generated by a
finite set G, acting on a set X, and M is some
subset of X, there is a useful device called the
Schreier graph, which is defined as follows. A
good example to keep in mind while reading
this definition is to take X as the nodes of T, M
as the set of nodes at some fixed level k of T,
and G as a self-similar group acting on T. For
each element of M draw a node labelled by this
element. Connect nodes mi, mj by a directed edge
labelled s ∈ G whenever mj = smi. Note that this
graph is connected if for any two points in M
there is always some group element (which can
be expressed as a finite product of generators
from G) which takes the point mi to mj. If this is
satisfied, we say that G acts transitively on M.

For example, if G is Grigorchuk’s group, X = T,
and M is the set of nodes at level k, then the
action of G is transitive on M since we can find
combinations of a, b, c, d which move any point to
any other in this level.

Here are the Schreier graphs for Grigorchuk’s
group acting on levels 2 and 3:

11 01 00 10
a

b

d

c

b

c

d

a

d

c

d

b

111 011 001 101 100 000 010 110
a

d

a

b

d

c

b

c

d c

a

d

b

d

c

b

c

a

d b

d

c

We can use the Schreier graphs of the Grig-
orchuk group to find geodesics as follows.
A word of the form u = ax1ax2 . . . axn/2

labelling a path starting from the node
labelled 11 . . .1 and moving right (end-
ing at a node we will call k) encodes an

To get the graph for the next level, we make two
copies of the graph for the previous level, append
1 to the nodes in one copy and 0 to the other, flip
the 0 copy then glue them together. The dashed
lines indicate where gluing occurs to get level 3.
In this way we see some more self-similarity.

Exercise 6.1. Draw the Schreier graph for level 4.

More generally, given any group G with gener-
ating set G, and any subgroup H, the set of left
cosets G/H is a set on which G acts transitively,
so we can form Schreier graphs for G acting
on G/H. If H is the trivial subgroup, then the
Schreier graph coincides with another standard
construction in group theory: the Cayley graph. If
G is a self-similar group acting transitively on
each level of T, let H be the subgroup of G

containing all elements which fix a node at level k.
Then the Schreier graph for G acting on G/H is the
same as the graph for G acting on T when M is
the set of nodes at level k.

7. Geodesics

Each element of a finitely generated group is
the product of some number of generators. A
product of generators is a geodesic if there is no
shorter product that equals the same element. For
example bcd is not a geodesic in the Grigorchuk
group, but adad is5

If G is a group with finite generating set G,
the geodesic growth function for G with respect to
G counts the number of geodesics of length (at
most) n. It is clear that this function is bounded
below by the usual growth rate (since each
element has at least one geodesic representing
it), and bounded above by an exponential
function (since there are kn strings of k letters of
length n).

In [1], groups with polynomial geodesic growth
functions are considered, and a natural extension
to Milnor’s question arises:

Open Question 7.1. Is there a group of
intermediate geodesic growth?

The first example to try is Grigorchuk’s group,
since the number of geodesics of length n is at
least the number of elements, so its geodesic
growth is superpolynomial.

automorphism that sends 11 . . .1 to k in T. Sup-
pose v is a product of a, b, c, d that also sends
11 . . .1 to k. Then v labels a path in the Schreier
graph, starting at 11 . . .1 and ending at k. Since
the Schreier graph describes all possible ways of
moving between nodes at a fixed level of the tree,
if v does not travel in a straight line in this graph
(like u does) it has no hope of sending 11 . . .1 to k.
In other words, no word shorter than u can be the
same group element as u. For each xi we have two
choices for b, c, d, so there are 2n/2

= (
√

2)n different
words of length n like this, so the geodesic growth
function is exponential. More details can be found
in [2].

5Don’t believe me? Run the word problem algorithm on
adadu−1 for all words u of length at most three.
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8. Example: The Basilica Group

Here is one more self-similar group. Let B be the
group acting on T, generated by two automor-
phisms a, b described by these self-similar rules:

a(0w) = 1b(w), a(1w) = 0e(w),

b(0w) = 0a(w), b(1w) = 1e(w).

Exercise 8.1. Draw an automaton (with states
labelled a, b, e) which encodes these rules.

Exercise 8.2. Draw the Schreier graph of the action
of B on level 2 of T.

Here is the Schreier graph for level 3, which
should look like two copies of the Schreier graph
for level 2, stuck together by breaking some edges
and reconnecting.

111 011 001

100

101

000 010 110

a

b

b

a ab a

b

a ba

b

a

b a

b

Exercise 8.3. Draw the Schreier graph of the action
of B for levels 4, 5, . . . of T. What do you see?

I hope this short introduction might inspire some
readers to explore the topic further. Some excellent
starting points are [3], [4] and [6].
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