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1. Foreword

The Hungarian mathematician László Lovász1

shared with Elias M. Stein the 1999 Wolf Prize2 in
mathematics. The award citations list that “László
Lovász has obtained ground-breaking results in
discrete mathematics that have had significant
applications to other areas of pure and applied
mathematics as well as to theoretical computer
science. He solved several outstanding problems,
including the perfect graph conjecture, Kneser’s
conjecture, and the determination of the Shannon
capacity of the pentagon, by introducing deep
mathematical methods relying on geometric poly-
hedral and topological techniques. . . . ”

The purpose of this article is to introduce
Lovász’s exciting derivation for determining the
Shannon capacity of the pentagon. Some issues
that discrete mathematicians are concerned with
in the 1960s shall also be touched. A brief intro-
duction to graph theory is given first.

2. Origin of Graph Theory

While it is difficult to pinpoint the exact year
when a subfield of mathematics starts, it is gen-
erally accepted that graph theory began with the

∗This article is translated from the Chinese article in Mathme-
dia vol 36 no 2 (June 2012), pp 24–33 by the same author, with
a slight modification.
1László Lovász (born March 9, 1948) is a Hungarian-American
mathematician, best known for his work in combinatorics,
for which he was awarded the Wolf Prize and the Knuth
Prize in 1999, and the Kyoto Prize in 2010. In high school,
Lovász won gold medals at the International Mathematical
Olympiad (in years 1964, 1965, 1966 with two special prizes).
Lovász received his Candidate of Sciences degree in 1970
at Hungarian Academy of Sciences. Lovász worked at the
Eötvös University until 1975. Between 1975–1982, he led the
Department of Geometry at the University of Szeged. In 1982,
he returned to the Eötvös University, where he created the
Department of Computer Science. Lovász was a professor
at Yale University during the 1990s and was a collaborative
member of the Microsoft Research Center until 2006. He
returned to Eötvös Loránd University, Budapest, where he
was the Director of the Mathematical Institute (2006–2011).
He served as the President of the International Mathematical
Union between January 1, 2007 and December 31, 2010.
2The Wolf Foundation began its activities in 1976, with an
initial endowment fund of $10 million donated by Dr Ricardo
Subiranay Lobo Wolf and his wife Francisca. It is awarded
in six fields: Agriculture, Chemistry, Mathematics, Medicine,
Physics, and an Arts prize that rotates between architecture,
music, painting, and sculpture.
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paper [1] on the seven bridge problem by Euler
in 1736.

In the 18th century, the city of Königsberg in
Prussia (now Kaliningrad, Russia) was laid out
on both sides of the Pregel River, and included
two large islands which were connected to each
other and the mainland by seven bridges; see the
schematic diagram on the left of Fig. 1. There
was a puzzle to find a walk through the city that
would cross each bridge once and only once.

After some trial and error, it is easy to see that
this is impossible. Euler gave a more “precise” ar-
gument. First, Euler pointed out that the choice of
a route inside each piece of land is irrelevant. The
only important feature of a route is the sequence
of bridges crossed. This allowed him to reformu-
late the problem in abstract terms (thus laying
the foundations of graph theory), eliminating all
features except the list of the pieces of land and

(a) (b)

Fig. 1. (a) Diagram of 4 pieces of land connected by 7 bridges;
(b) schematic representation of (a).
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the bridges connecting them. In modern terms,
one replaces each piece of land by an abstract
“vertex” or node, and each bridge with an abstract
connection, an “edge”, which only serves to record
which pair of vertices (pieces of land) is connected
by that bridge. The resulting mathematical struc-
ture is called a graph; see Fig. 1(b).3 The problem
then is to start from some vertex and to traverse
along an edge to another vertex, then to traverse
along another edge to another vertex etc, until
each edge has been traversed exactly once.

Euler considered not only the special case of
seven bridges but also general graphs. For any
vertex v of a graph, define its degree d(v) to be
the number of edges incident to it. As examples,
in Fig. 1, d(A) = d(C) = d(D) = 3 and d(B) = 5. To
sum up the degrees of all vertices, we label each
edge incident to each vertex when add its degree.
The degree sum is equal to the total number of
labels made. As each edge has two end vertices,
it is labelled exactly twice. Consequently, Euler
established that

∑
v

d(v) = 2m,

where m is the number of edges in the graph.
The above argument is known as double counting,
which is a useful method. From the degree sum
formula, we know that the number of vertices
with odd degree is even. For instance, the graph
in Fig. 1 has four vertices of odd degree.

The argument by Euler to prove that the seven
bridge problem has no solution is as follows.
Suppose that there is a feasible tour from x to
y (which is called a walk in graph theory). For
any vertex z, distinct from x and y, after entering
z through an edge, one also needs to leave z
from another edge. Hence the edges incident to
z appear in pairs, and so d(z) is even. However,
the degrees of all vertices of the graph in Fig. 1
are odd, which is impossible.

The main part of Euler’s paper was to discuss
the converse. It explained that if the graph is
connected and all vertices have even degrees, then
one can start from any vertex to traverse a walk
using each edge exactly once and finally come
back to the original vertex.4

3This was first appeared in the book “Mathematical Recre-
ations and Problems of Past and Present Times” by W. W.
Rouse Ball (1892).
4In fact Euler’s argument on this part was incomplete. How-
ever, it is not hard to fix it. People now still give the contri-
bution to Euler and call such a walk an “Euler tour”.

If a connected graph has 2k vertices of odd
degree, by pairing them and adding k new edges
connecting them will result in a connected graph
whose vertices all have even degrees. Hence there
is a walk from some vertex traversing each edge
exactly once and returning to the original vertex.
Deleting the k added edges, k walks of the original
graph are produced. Hence, in the seven bridge
problem, two walks are needed, rather than one.

3. First Book by König

During the two hundred years from 1736 to 1936,
researchers in different areas studied the same
concept of graph discovered by Euler, but using
different terminologies in various contexts; see
[2]. In 1936, König wrote the first book on graph
theory [3]. Graph theory has been developing
quickly since then. Its theory and applications are
recognized in mathematics as well as many other
fields. Related books increase exponentially.

For the convenience of our discussion, some
terminologies are fixed. A graph is an ordered pair
G = (V, E), where V is a nonempty finite set whose
elements are called vertices, and E is a set of some
unordered pairs of distinct vertices called edges.
Sometimes, V(G) is used for the vertex set and
E(G) for the edge set of graph G. To simplify the
notation, an edge e = {u, v} is often written as uv
such that uv is the same as vu. In this case, u and v
are called the end vertices of e. It is also said that e
and u (or v) are incident; also, u and v are adjacent,
or u and v are neighbors to each other. Let N(v) be
the set of all neighbors of v.

A graph is often drawn explicitly for con-
venience of visualization. For instance, Fig. 2
shows a graph with V = {a, b, c, d, e} and E =
{ab, ae, bc, cd, de}. If the labels of the vertices are not
important in the discussion, they may be omitted.
One may only label those vertices whose names
are relevant in the discussion.

Fig. 2. A graph of 5 vertices and 6 edges.



April 2013, Volume 3 No 2 3

Asia Pacific Mathematics Newsletter3

There are variations on the definition of a
graph. If more than one edge is allowed between
two vertices, then one has multigraphs with mul-
tiple edges. If it is further allowed for an edge to
have two identical end vertices, then one has pseu-
dographs with loops. If a direction is assigned to
each edge (in this case, (u, v) = uv and (v, u) = vu
are regarded as distinct), then one has directed
graphs. If E(G) is allowed to be infinite, then one
has infinite graphs.

Fig. 3. Examples of a multigraph, a pseudograph, a directed
graph and an infinite graph.

A walk in a graph is a sequence
v0, e1, v1, e2, v2, . . . , ek, vk, where vi−1 and vi are
the end vertices of the edge ei for 1 ≤ i ≤ k. In
the definition, v0 is the starting vertex, vk the end
vertex and k the length of the walk. The walk is
closed when v0 = vk, and is open when v0 � vk.
If a graph has no multiple edges or loops, then
ei is determined by vi−1 and vi. In this case, one
may use v0, v1, . . . , vk for a walk. A trial is a walk
without repeated edges. A walk without repeated
vertices is known as a path. An Euler tour is a
closed trial in which every edge of the graph
appears exactly once. When every two vertices of
a graph have a walk between them, it is known
as connected graph. In summary, Euler’s theorem
can be stated as follows.

Theorem (Euler). For a graph G without vertices of
degree zero, G has an Euler tour if and only if G is
connected and every vertex has an even degree.

A bipartite graph is a graph whose vertex set
can be partitioned into A and B such that every
edge has one end vertex in A and another end
vertex in B. A matching in a graph is an edge
set in which no two distinct edges have a same
end vertex. The study of matchings in bipartite
graphs was popular at the beginning of the 20th
century. König was attracted to this problem, and
he found graph theory interesting. As the result
of his studies, he published the first book on
graph theory in 1936 [3]. In this book, bipartite

matching occupied an important part. The famous
Hungarian algorithm was established by König
and Egerváry to determine a maximum matching
of a bipartite graph; see [4, 5].

4. Vertex Coloring of Graphs

Graph coloring has its origin in a problem posed
by the British student Francis Guthrie (who later
became a professor in mathematics in South
Africa) who asked whether a plane graph can
be face four-colorable. A face coloring of a plane
graph is the same as a vertex coloring of its
dual graph. The dual graph of a plane graph is
a plane graph whose vertices correspond to the
faces of the original graph and two vertices in the
dual graph are adjacent if the corresponding faces
share an edge. So people now often study vertex
coloring for convenience. After the problem has
studied for one century, many directions and tools
together with exciting results on graph coloring
are established. Finally, Appel, Haken and Koch
[6, 7] proved the Four Color Theorem in 1977,
by means of computers using the “discharging
method”. Their method relies heavily on com-
puter and needs massive computing. The proof
is not satisfying to all mathematicians. Even now,
there are still people seeking a neat and “read-
able” proof for the theorem. A comment by them
is that “A good mathematical proof should be
like a poem, but this is just a telephone book.”
Although the proof is simplified by Robertsen,
Sanders, Seymour and Thomas [8], computer aid
is still unavoidable.

Our interest in graph coloring is not on the
Four Color Theorem, instead is on the applica-
tions in the real world such as scheduling, time
table, channel assignment, resource allocation, ex-
perimental design etc.

A proper k-coloring of a graph G is a mapping
f : V(G) → {1, 2, . . . , k} such that f (x) � f (y) for
any two adjacent vertices x and y. The chromatic
number χ(G) of G is the minimum k for which
G has a proper k-coloring. As we can properly
color the vertices of the graph G in Fig. 2 by
f (a) = f (c) = 1, f (b) = f (d) = 2, f (e) = 3, it is the
case that χ(G) ≤ 3. In fact, χ(G) = 3 since a, b, e
need different colors.

In a graph G, an independent set (respectively,
clique) is a subset S ⊆ V(G) in which every two
distinct vertices are not adjacent (respectively, are
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adjacent). The independence number α(G) (respec-
tively, clique number ω(G)) of G is the maximum
size of an independent set (respectively, clique).
From the definition of a proper k-coloring f , it is
the case that f −1(i) = {x ∈ V(G) : f (x) = i} is an
independent set for 1 ≤ i ≤ k. Consequently, the
chromatic number χ(G) is the minimum number
of independent sets one can partition V(G) into,
where each independent set f −1(i) is called a color
class.

The reason for graph coloring to have wide
applications is because in the real applications
one often needs to partition objects into classes
with certain properties. If the objects are viewed
as vertices of a graph and two objects do not have
a certain property are linked by an edge, then
the problem is often reduced to a graph coloring
problem. An example is given as follows.

A university has n courses and the ith course
uses the time slot [ai, bi]. The duty of the Academic
Affair Office is to schedule the courses by using
a minimum number of classrooms subject to the
constraint that two courses with overlap time slots
cannot use the same classroom. One may consider
the graph G with vertex set V(G) = {v1, v2, . . . , vn}
and edge set E(G) = {vivj : i � j, [ai, bi] ∩ [aj, bj] �
∅}. Coloring two courses that can use the same
classroom by the same color produces a proper
coloring of the graph. Hence χ(G) is the minimum
number of classrooms needed.

The graph defined above by using intervals
in the real line is called an interval graph. Graph
coloring for interval graphs is a popular subject
in the 1960s.

5. Origin of Perfect Graph

The chromatic number of an interval graph can
be obtained by the following method which is
known as greedy algorithm, as minimality crete-
rion is applied. Suppose that G is an interval
graph in which vertex vi coresponds to the in-
terval [ai, bi] in the real line for 1 ≤ i ≤ n. For
convenience, assume that a1 ≤ a2 ≤ · · · ≤ an.

Greedy algorithms look for simple, easy-to-
implement solutions to complex, multi-step prob-
lems by deciding which next step will provide the
most obvious benefit.

A greedy algorithm is used to color the vertices
of G: for i from 1 to n, color vi one by one by “the
minimum positive integer not used for vj with j <
i and [ai, bi] ∩ [aj, bj] � ∅”.

It is evident that the coloring produced is
proper. Suppose that a total of k colors are used.
The following primal-dual approach is used to
prove that χ(G) = k. First, for any graph G the
weak dual inequality

ω(G) ≤ χ(G)

holds, since distinct vertices in a clique need to
be colored by different colors. Let us return to
the coloring in the interval graph. Suppose vertex
vi is colored by k. The reason it is colored by k is
because that there are j1, j2, . . . , jk−1 (all less than
i) such that vjr is colored by r (1 ≤ r ≤ k − 1)
and [ajr , bjr ] ∩ [ai, bi] � ∅. However, jr < i implies
that ajr ≤ ai and so [ajr , bjr ] contains ai. These give
that {vj1 , vj2 , . . . , vjk−1 , vi} is a clique of k vertices.
Consequently,

k ≤ ω(G) ≤ χ(G) ≤ k,

and so ω(G) = χ(G) = k. The good result above
is due to the fact that the interval graph G has
the “perfect” property of ω(G) = χ(G). This also
appears in the work by Shannon to be described
below. However, Berge (in the 1960s) defined the
perfection of a graph requiring more conditions.
A graph is perfect if ω(H) = χ(H) for every induced
subgraph H of G. An induced subgraph of a graph
G is a graph H such that V(H) ⊆ V(G) and
E(H) = {xy ∈ E(G) : x, y ∈ V(H)}. The reason
that Berge defined the perfection in this way is
because that even when ω(G) = χ(G), the graph
may still contain an induced subgraph with very
bad structure. For instance, no matter what graph
H is, if it has n vertices, then for G = H ∪ Kn one
always has ω(G) = χ(G) = n.

During the earlier years, besides the pair of
graph parameters ω and χ, people also considered
α and θ, where θ(G) is the minimum number of
cliques required to partition the vertex set V(G).
As an independent set (respectively, a clique) in
G is a clique (respectively, an independent set) in
the complement Gc of G,

α(G) = ω(Gc) and θ(G) = χ(Gc)

or equivalently

ω(G) = α(Gc) and χ(G) = θ(Gc).

Hence, studying ω and χ for G is the same as
studying α and θ for the complement graph Gc.
Shannon’s work is described below in terms of α
and θ.
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In 1956, Shannon [9] studied zero-fault infor-
mation transmission. The aim is to transmit in-
formation without confusion. Suppose that there
is a set V of “letters” to be used for transmitting
messages. Construct a graph G with vertex set V
and edge set E = {xy : x and y are not confusable}.
Two messages x1x2 · · · xm and y1y2 · · · ym of length
m are not confusable if xi � yi and xi and yi

are not confusable for some i. The aim is, for a
fixed m, to find a maximum sized set of pairwise
nonconfusable messages of length m. A simple
method is to find an independent set S of size
α(G). Then

{x1x2 · · · xm : each xi ∈ S}

is such a message set of size α(G)m. The problem
is whether a better answer exists.

The answer is positive. One may do better for
some cases. Consider the example of G = C5, the
pentagon, with V(C5) = {a, b, c, d, e} and E(C5) =
{ab, bc, cd, de, ea}. It is easy to see that α(C5) = 2 and
so there is a set of nonconfusable set of size 2m.
However, one may consider the set of x1x2 · · · xm

such that for each odd i the pair xixi+1 is chosen
from {aa, bc, ce, db, ed}. This produces a nonconfus-
able set of size 5⌊m/2⌋, which is significantly larger
than 2m when m is large.

Fig. 4. Five choices of xixi+1 from {aa, bc, ce, db, ed}.

To simplify the description, the concept of
strong product operation on graphs is introduced.
The strong product of two graphs G and H is the
graph G⊗H with vertex set V(G⊗H) = V(G)×V(H)
and edge set

E(G ⊗H) = {(x, y)(x′, y′) : (x = x′ or xx′ ∈ E(G)) and

( y = y′ or yy′ ∈ E(H))}.

For a positive integer m, let Gm = G⊗G⊗· · ·⊗G
(m times). The number asked by Shannon is then
the value α(Gm). Notice that for any two graph G
and H,

α(G ⊗H) ≥ α(G) ⊗ (H)

Fig. 5. P4 ⊗ P5.

and so α(Gm) ≥ α(G)m. For G = C5, one has α(Cm
5 ) ≥

α(C5)m = 2m. It was in fact obtained that α(Cm
5 ) ≥

5⌊m/2⌋. In general, α(Gm) grows exponentially. For
convenience, one considers α(Gm)1/m, whose limit
exists5 as m → ∞. Let ψ(G) = limm→∞ α(Gm)1/m,
which is known as the Shannon capacity. Let us
come back to C5. What is ψ(C5)? It was already
known that ψ(C5) ≥

√
5.

Before giving Lovász’s proof for ψ(C5) =
√

5,
let us return to perfect graphs. First, similar to
the weak perfect graph inequality χ(G) ≥ ω(G),
one also has θ(G) ≥ α(G). One shows that

α(G)α(H) ≤ α(G ⊗H) ≤ θ(G ⊗H) ≤ θ(G)θ(H).

Consequently, α(G)m ≤ α(Gm) ≤ θ(Gm) ≤ θ(G)m

and so α(G) ≤ α(Gm)1/m ≤ θ(Gm)1/m ≤ θ(G).
If α(G) = θ(G), then the nice conclusion that
ψ(G) = α(G) is obtained. This was why Berge
imposed the condition for G to have α(G) = θ(G).
As mentioned before, it is easier to characterize
graphs G for which α(H) = θ(H) holds for all
induced subgraphs H.

Since the relation between ω and χ of a graph
G is the same as the relation between α and θ of its
complement Gc, one in fact studies the perfection
for both G and Gc. The first minimal nonperfect
graph is C5. This is why one has that ψ(C5) ≥

√
5 >

2 = α(C5). When studying perfect graphs, Berge
observed that if one of G and Gc is perfect, then
so is the other. Interval graphs are examples with
this nice property. It is easy to see that a perfect
graph cannot contain C2k+1 and Cc

2k+1 (k ≥ 2) as
induced subgraphs. The converse seems to be true
as well. Hence he gave the following two famous
conjectures.

(C1) Graph G is perfect if and only if Gc is
perfect.

(C2) Graph G is perfect if and only if G does
not contain C2k+1 and Cc

2k+1 (k ≥ 2) as induced
subgraphs.

5In general, if a function f : N → R+ satisfying f (m + n) ≥
f (m)f (n) for any m, n ∈ N, then limm→∞ f (m)1/m exists. This is
the famous Fekete Theorem.
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Notice that (C2) implies (C1). Hence, (C1) is
known as the Weak Perfect Graph Conjecture and
(C2) the Strong Perfect Graph Graph Conjecture.
The Weak Perfect Graph Conjecture was proved
by Lovász [7, 8] in 1972. This is also contained in
the citation for Lovász to receive his Wolf Prize.
The Strong Perfect Graph Conjecture was proved
by Chudnovsky, Robertson, Seymour and Thomas
[9] in 2006.

6. Lovász’s Ingenuity

Finally, let us explain how Lovász determined the
value of ψ(C5). The tensor product of two vectors
x = (x1, x2, . . . , xn) ∈ Rn and v = (v1, v2, . . . , vm) ∈ Rm

is the vector

x ◦ v = (x1v1, x2v1, . . . , xnv1, x1v2, x2v2, . . . , xnv2, . . . ,

x1vm, x2vm, . . . , xnvm)

in Rnm. The inner product of two vectors x and y
in Rm is ⟨x, y⟩ = ∑m

i=1 xiyi. For any vectors x and y
in Rn and v and w in Rm,

⟨x ◦ v, y ◦ w⟩ = ⟨x, y⟩⟨v, w⟩. (∗)

Suppose that graph G has vertex set V(G) =
{1, 2, . . . , n}. A standard orthonormal representation of
G is a family of unit vectors (v1, v2, . . . , vn) in an
Euclidean space such that vi is orthogonal to vj if
i is not adjacent to j. Such a representation always
exists, for instance a family of pairwise orthogonal
unit vectors is a desired one. By formula (∗), one
has:

Lemma 1. If (u1, u2, . . . , un) and (v1, v2, . . . , vn) are
standard orthonormal representations of G and H re-
spectively, then all ui ◦vj form a standard orthonormal
representation of G ⊗H.

Define the value of a standard orthonormal
representations (u1, u2, . . . , un) as

min
c

max
1≤i≤n

1
⟨c, ui⟩2

,

where c runs over all unit vectors. A unit vector
c attaining the minimum is called a handle of
the representation. The notation ϕ(G) is used for
the minimum value of a standard orthonormal
representation of G, and call the representation
attaining this value an optimal representation.

Lemma 2. ϕ(G ⊗H) ≤ ϕ(G)ϕ(H).

Proof. Suppose (u1, u2, . . . , un) and (v1, v2, . . . , vn)
are optimal representations of G and H with

handles c and d, respectively. By formula (∗), c ◦ d
is a unit vector. By (∗) again,

ϕ(G ⊗H) ≤ max
i,j

1
⟨c ◦ d, ui ◦ vj⟩2

= max
i,j

1
⟨c, ui⟩2⟨d, vj⟩2

= ϕ(G)ϕ(H). �

Lemma 3. ψ(G) ≤ ϕ(G).

Proof. First we prove that α(G) ≤ ϕ(G). Suppose
that (u1, u2, . . . , un) is an optimal representation of
G with a handle c. Without loss of generality,
assume that {1, 2, . . . , k} is a maximum indepen-
dent set of G. Since u1, u2, . . . , uk are pairwise
orthogonal,

1 = ∥c∥2 ≥
k∑

i=1

⟨c, ui⟩2 ≥ α(G)
ϕ(G)

.

This, together with Lemma 2, implies that α(Gn) ≤
ϕ(Gn) ≤ ϕ(G)n. Taking (1/n)th power and taking
the limit give the lemma. �

Having the lemmas above at our disposal, we
are now ready to give the wonderful proof of
ψ(C5) =

√
5 by Lovász. Consider an umbrella,

as one in the real life, with the handle and the
five bones of unit length. Assume the top of
the umbrella is at the origin O(0, 0, 0) of the 3-
dimensional space R3. Another end of the han-
dle is at (0, 0, 1). The other ends A1, A2, A3, A4, A5

of the five bones are also at (0, 0, 1) when the
umbrella is closed. When the umbrella is open,
A1, A2, A3, A4, A5 form a pentagon lying on the
circle with center (0, 0,

√
1 − r2) and radius r in

the plane z =
√

1 − r2 of the 3-dimensional space.
The radius r increase from 0 to 1 during the
opening of the umbrella. For the radius r, the
length of each side of the pentagon is 2r sin 36◦,
and the distance between nonconsecutive Ai and
Aj (such as A1 and A3) is 2r sin 72◦. So the lengths
of the sides of the isosceles triangle formed by
OAi and OAj are 1, 1, 2r sin 72◦. By the Pythagorean
theorem, the angle between OAi and OAj is 90◦

when 2r sin 72◦ =
√

2. That is, when the umbrella
is open to r = csc 72◦/

√
2 ≈ 0.7435, the angle

between the two nonconsecutive bones is a right
angle. The handle of the umbrella is used as
vector c, and the bones as u1, u2, u3, u4, u5 to form a
standard orthonormal representation of C5. Since
⟨c, ui⟩ = 5−1/4, it is the case that ψ(C5) ≤ ϕ(C5) ≤

√
5.

Consequently, ψ(C5) =
√

5.
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