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1. Problem

An anonymous Arab manuscript [1], written

before 972, contains the following

Congruent number problem (Original version).

Given an integer n, find a (rational) square γ2 such

that γ2 ± n are both (rational) squares.

Examples

1. 24 is a congruent:

52
+ 24 = 72, 52 − 24 = 12.

So is 6:
(

5

2

)2
+ 6 =

(
7

2

)2
,

(
5

2

)2
− 6 =

(
1

2

)2
.

It is clear that it suffices to assume n has no

square factors.

2. Leonard Pissano in 1220’s was challenged

by Emperor’s scholars to show that 5, 7 are

congruent numbers:

5 :

(
49

12

)2
,

(
41

12

)2
,

(
31

12

)2

7 :

(
463

120

)2
,

(
337

120

)2
,

(
113

120

)2

Conjecture (Fibonacci). 1 is not a congruent

number.

It took 400 hundreds year until it was proved

by Fermat using his method of infinite descent.

Triangular version

Congruent number problem (Triangular ver-

sion). Given a positive integer n, find a right angled

triangle with rational sides and area n.

This was considered as a principle object of the

theory of rational triangles in 10th century.

The equivalence of the two forms is not diffi-

cult to prove: Suppose we are given an arithmetic

progression α2, β2, γ2 with common difference n

then we have the following right triangle with

area n:

a = γ − α, b = γ + α, c = 2β.

Conversely given a right triangle [a, b, c] with

area n, then we have following progression with

difference n:
(
a − b

2

)2
,

( c
2

)2
,

(
a + b

2

)2
.

The following are right triangles respectively

with areas 5, 6, 7:
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2. Fermat 1659

In a letter to his friend, Fermat wrote:

“I discovered at least a most singular method...

which I call the infinite descent. At first I used

it only to prove negative assertions such as ...

there is no right angled triangle in numbers whose

area is a square, ... If the area of such a triangle

were a square, then there would also be a smaller

one with the same property, and so on, which is

impossible, ...”

He adds that to explain how his method works

would make his discourse too long, as the whole

mystery of his method lay there. To quote Weil:

“Fortunately, just for once he (Fermat) had found

room for this mystery in the margin of the very

last proposition of Diophantus”.

Fermat’s argument was based on the ancient

Euclidean formula (300 BC): Given (a, b, c) positive

integers, pairwise coprime, and a2
+ b2
= c2. Then

there is a pair of coprime positive integers (p, q)

with p + q odd, such that

a = 2pq, b = p2 − q2, c = p2
+ q2.

Thus we have a Congruent number generating

formula:

n = pq(p + q)(p − q)/�.
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Here are some examples:

(p, q)= (2, 1), pq(p2 − q2)=2 × 3, n(2, 1)=6;
(p, q)= (5, 4), pq(p2 − q2)=5 · 4 · 9, n(5, 4)=5;
(p, q)= (16, 9), pq(p2 − q2)=16 · 9 · 7, n(16, 9)=7.

Theorem (Fermat). 1, 2, 3 are non-congruent.

The following is the argument for 1 being a

non-congruent number:

1. Suppose 1 is congruent. Then is an integral

right triangle with minimum area: � = pq(p +

q)(p − q).

2. As all 4 factors are co-prime,

p = x2, q = y2, p + q = u2, p − q = v2.

3. Thus we have an equation with the solution

as follows:

(u + v)2
+ (u − v)2

= (2x)2.

4. Then (u + v, u − v, 2x) forms a right triangle

and with a smaller area y2. Contradiction!

3. Conjectures

Following Goldfeld and BSD (Birch and

Swinnerton-Dyer conjecture), we have the

following conjecture concerning the distribution

of congruent numbers:

Conjecture. Let n be a square free positive integer.

1. If n ≡ 5, 6, 7 mod 8 then n is congruent.

2. If n ≡ 1, 2, 3 mod 8 then n has probability 0 to

be congruent:

lim
X→∞

#{n≤X : n=1, 2, 3 mod 8 and congruent}
X

=0.

Examples

1. Congruent numbers under 23:

n = pq(p + q)(p − q)/�.

14 ≡ 6 mod 8 (p, q) = (8, 1);

15 ≡ 7 mod 8 (p, q) = (4, 1);

21 ≡ 5 mod 8 (p, q) = (4, 3);

22 ≡ 6 mod 8 (p, q) = (50, 49);

13 ≡ 5 mod 8 (p, q) = (52 · 13, 62);

23 ≡ 7 mod 8 (p, q) = (1562, 1332).

2. Conjecturally, if n ≡ 1, 2, 3 mod 8 is congruent

then there are at least two very different ways

to construct triangles:

34 ≡ 2 mod 8, (p, q) = (17, 1), (17, 8);

41 ≡ 1 mod 8, (p, q) = (25, 16), (41, 9);

219 ≡ 3 mod 8, (p, q) = (73, 48), (169, 73).

4. Theorems

The following are some results about the con-

gruent and non-congruent numbers with specific

prime factors.

Congruent primes

Theorem (Genocchi (1874), Razar (1974)). A prime

p (respectively 2p) is non-congruent if p ≡ 3 mod 8

(respectively p ≡ 5 mod 8).

Theorem (Heegner (1952), Birch–Stephens

(1975), Monsky (1990)). A prime p (respectively

2p) is congruent if p ≡ 5, 7 mod 8 (respectively p ≡ 3

mod 4).

Zagier has computed a precise triangle with

prime area 157:

157 = 1
2 ab, a2

+ b2
= c2.

a =
411340519227716149383203

21666555693714761309610

b =
6803298487826435051217540

411340519227716149383203

c=
224403517704336969924557513090674863160948472041

8912332268928859588025535178967163570016480830
.

Congruent numbers with many prime factors

Theorem (Feng 1996, Li–Tian 2000, Zhao 2001).

For any positive integer k, and any j ∈ {1, 2, 3}, there

are infinitely many non-congruent numbers n with k

odd primes factors, and congruent to j mod 8.

Theorem (Gross 1985, Monsky 1990, Tian 2012).

For any positive integer k, and any j ∈ {5, 6, 7}, there

are infinitely many congruent numbers n with k odd

primes factors, and congruent to j mod 8.

5. Elliptic Curves

Congruent number problem (Elliptic curve ver-

sion). For a positive integer n, find a rational point

(x, y) with non-zero y on the elliptic curve:

En : ny2
= x3 − x.

The equivalence with the triangle version is

given by:

x =
p

q
⇔ (a, b, c) = (2pq, p2 − q2, p2

+ q2).
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The rational points on an elliptic curve form a

group. The understanding of this group structure

is a major question in modern number theory and

arithmetic algebraic geometry. The following was

conjectured by Poincaré in 1901.

Theorem (Mordell 1922). Let C be an elliptic curve

over Q. Then

C(Q) ≃ Zr ⊕ C(Q)tor

for some r > 0, where C(Q)tor is a finite group.

L-series

Let ∆ denote the discriminant of C and set

Np = #{solutions of y2 ≡ x3
+ ax + b mod p}.

ap = p −Np.

L(C, s) =
�

p∤2∆

(1 − app−s
+ p1−2s)−1.

Then L(C, s) is absolutely convergent forℜ(s) >

3/2 (Hasse), and has holomorphic continuation to

C (Wiles, et al.).

An $1,000,000 prize problem by Clay

Math Institute:

Conjecture (Birch and Swinnerton-Dyer). The

Taylor expansion of L(C, s) at s = 1 has the form

L(C, s) = c(s − 1)r
+ higher order terms

with c � 0 and r = rank C(Q). In particular L(C, 1) = 0

if and only if C(Q) is infinite.

Application to congruent numbers

1. The L-series L(En, s) has a functional equa-

tion s→ 2 − s with sign

ǫ(n) =


1 n ≡ 1, 2, 3 mod 8

−1 n ≡ 5, 6, 7 mod 8.

This gives a partition N = S
�

T according

to ǫ = ±1.

2. Conjecturally, 100% of n ∈ S are non-

congruent numbers.

This maybe be checked by computing the

Selmer groups which is a modern version of

the Fermat’s infinite descent, the only tool

available for non-congruent numbers.

3. Conjecturally, 100% of n ∈ T are congruent

numbers with solutions given by Heegner

points, the only tool available for congruent

numbers.

Tian’s theorem

Theorem (Ye Tian). Let m ≡ 5, 6, 7 be a square free

number and consider E(m) : my2
= x3 − x. Then

rank E(m)(Q) = 1 = ords=1L(E(m), s)

provided the following condition verified:

1. the order part n = p0p1 · · · pk with pi ≡ 1 mod 8

for i > 1.

2. the class group A of K = Q(
√
−2n) satisfies

dimF2
(A[4]/A[2]) =


1, p0 ≡ ±1 mod 8

0, p0 ≡ ±3 mod 8

6. Heegner Method

Both Monsky and Tian have proven their theorem

based on the original method of Heegner. Heeg-

ner published his paper in 1952 as a 59 years

old nonprofessional mathematician. In the same

paper, Heegner solved Gauss’ class number one

problem whose correctness was accepted by the

math community only in 1969, four years after

Heegner died.

Modular parametrization

Heegner’s main idea of constructing solutions to

E : y2
= x3 − x is by using modular functions

(analogous to parametrizing the unit circle using

trigonometric functions ( cos 2πt, sin 2πt)):

f : H := {z ∈ C,ℑz > 0} −→ E(C).

The same idea can be used to answer the

question:

Question. Why is eπ
√

163 an almost an integer?

eπ
√

163
= 262537412640768743.99999999999925...

= 6403203
+ 744 − 74 × 10−14...

The answer lies in the algebraicity of the spe-

cial values of modular functions just like trigono-

metric functions which are transcendental but

take algebraic values at rational multiples of π.

Modular functions are transcendental, but take

algebraic values at quadratic points. For example:

j(z) = e−2πiz
+ 744 + 196884e2πiz

+ 21493760e4πiz
+ · · ·

j((1+
√
−163)/2)=−6403203

=−262537412640768000
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Heegner point

Here are the precise steps of construction of
Heegener points in Tian’s paper: Define E(m) :
my2
= x2 − x, m∗ := ( − 1)(n−1)/2m.

1. Take a standard parametrization f :

X0(32)→ E(1).

2. Take a CM point in X0(32) = Γ0(32)\H by

P =


[i
√

2n/8], n ≡ 5 mod 8,

[(i
√

2n + 2)/8] n ≡ 6, 7 mod 8

3. Take χ : Gal(H(i)/K) −→ Gal(
√

m∗)/K ≃ {±1},
4. Define Pm =

�
σ∈Gal(H(i)/K) f (P)σχ(σ).

Then Pm ∈ E(Q(
√

m∗)− ≃ E(m)(Q).
What Tian proves is the following non-

vanishing statement of Heegner points:

Theorem (Ye Tian). Assume the following condition
verified:

1. The order part n = p0p1 · · · pk with pi ≡ 1 mod 8
for i > 1.

2. The class group A of K = Q(
√
−2n) satisfies

dimF2
(A[4]/A[2]) =


1, p0 ≡ ±1 mod 8

0, p0 ≡ ±3 mod 8

Then

Pm ∈ 2kE(m)(Q), Pm � 2k+1E(m)(Q).
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