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The following essay is based on a lecture delivered

at the Isaac Newton Institute in the summer of

2005.

In the fall of 2004, I visited the excellent mathe-

matical logic group at the University of Illinois,

and greatly appreciated the hospitality of Carl

Jockusch, who was gracious enough to share his

office with me for the duration of my stay. In

due course, I had the pleasure of conversing with

him over lunch. It was then that I learnt of the

term “relative computability,” a subject to which

I am told Carl has made profound contributions.

Furthermore, Carl was kind enough to inform

me of a remarkable conjecture that provides a

comfortable framework for the topic I am set to

discuss. So let us start with that.

Here, the objects of interest are integral

Diophantine equations, that is, equations of the

form

f (x1, x2, . . . , xn) = 0

where f (x1, . . . , xn) is a polynomial with integral

coefficients. I am sure you know about the exis-

tence problem related to this equation, that is, the

problem of determining the existence of integral

solutions, as well as the undecidability result of

Matiyasevich [1]. The subject of the conjecture,

however, goes beyond existence. That is, it con-

siders simultaneously the problem of determining

the finiteness of the solution set. It is easy to see,

by adjoining a dummy variable, that the finiteness

problem is undecidable as well: f (x1, x2, . . . , xn) = 0

has a solution if and only if

g(x1, x2, . . . , xn, xn+1) = f (x1, x2, ..., xn) = 0

has infinitely many solutions. However, even with

the general result, you probably know that some

of the most celebrated theorems of arithmetic are

about finiteness for specific sorts of equations.

In fact, many of them state finiteness in total

ignorance of existence. And then, sometimes you

know existence and nothing about finiteness. But

as far as the decision problem is concerned, the

conjecture in question probes this relationship

more deeply.

Conjecture 1 (Matiyasevich). The finiteness prob-

lem for integral points is undecidable relative to the

existence problem.

In other words, even given an “existence ora-

cle,” i.e. a decision oracle for the existence prob-

lem (or equivalently, an oracle for the halting

problem), the finiteness problem should be un-

decidable. I am sure one can make this conjecture

more precise or generalise it in many ways using

the sophisticated machinery of recursion theory,

of which I am woefully ignorant. Also, for a

naive number-theorist, the subtleties of relative

computability are often hard to comprehend in

a situation where the oracle whose existence we

need to assume is known not to exist. This is of

course because we are more obsessed with solving

problems than classifying them. In any case, when

I heard this conjecture, it seemed natural enough

to ask this question in a context where a relative

computability result still has a chance of leading

to an actual reduction of the problems of interest.

That is, we can shift our attention (seemingly

slightly) to rational solutions rather than just the

integral ones. Having done that, one finds that

this conjecture relates rather well to established

programs in Diophantine geometry, and a precise

articulation of this relationship becomes quite de-

sirable. I will not attempt to carry this out today,

out of pure laziness. However, I do wish to give

some sense of the issues that come up, and maybe

put forth a suggestion or two as to the kind of

phenomena one should expect. For example, here

is something of a guess.

Guess 2. For rational solutions, the finiteness problem

is decidable relative to the existence problem.

That is, as far as rational solutions are con-

cerned, my expectation goes counter to the con-

jecture for integral solutions. That this could be so

is not too surprising since, I believe, experienced
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recursion theorists and number theorists do find

the nature of rational and integral solutions to

be very different. In particular, I do not think

too many people expect Z to be definable in Q.

Barry Mazur has pointed out that the explicit

family of equations constructed by Matiyasevich

all have rational solutions for trivial reasons (I

have not verified this myself). As another illustra-

tion, consider the case of elliptic curves (curves of

genus one equipped with a rational point) where

the finiteness of integral solutions is well-known.

For rational solutions, by contrast, the decision

problem for finiteness forms an important part of

the Birch and Swinnerton-Dyer (BSD) conjecture.

In other words, the rational case is notoriously

difficult. More on this point later. I wish to post-

pone to the end of the lecture an explanation

of the intuition behind my guess which needs

to be vague anyway, since otherwise, I would

have done the work necessary to elevate the

guess to a conjecture. Instead, I will concentrate

for now on the case of curves. That is, to say,

we are interested in Diophantine equations in

two-variables,

f (x, y) = 0,

where f is again a polynomial with integral coef-

ficients, but assumed now to be irreducible over

the complex numbers. [A note for geometers: In

this essay, although I cannot help lapsing into

geometric terminology, the emphasis really is on

the equations themselves. That is, the precise pre-

sentation under discussion, as input for machines,

is the focal point.] As stated, we will be interested

in the rational solutions, which I will mostly

refer to merely as solutions, for brevity. A rough

classification of the solution set, representing the

main achievements of 20th century number the-

ory, depends on the genus, g(f ), of the equation

(or the polynomial). That is, one considers the

field

C(x)[y]/(f (x, y)),

which can be realised as the field of meromor-

phic functions on a unique Riemann surface. The

genus of this surface is the genus of f . In most

cases, it can be computed readily from f using

the formula

g(f ) = (d − 1)(d − 2)/2

where d is the degree of f . And then one

knows:

— If g(f ) = 0 then the solution set is empty or

infinite.

— If g(f ) = 1 then the solution set can be empty,

non-empty finite, or infinite.

— Finally, if g(f ) ≥ 2, then the solution set is

empty, or non-empty finite.

A fact that emerges from this classification is

that if we restrict our attention to equations with

g(f ) ≥ 2, then my guess is trivially correct (in so

far as the stated classification is trivial). However,

what seems not entirely trivial is that even more

is true, in some sense. To flesh out this cryptic

comment, we start by recalling the situation in

genus zero. Here, after some change of variables,

one essentially reduces to equations of the form

ax2
+ by2

= c,

where a, b, c are non-zero. In this classical case,

there is the fact involving the Hilbert symbol, that

a solution exists if and only if

(c,−1)v(c, a)v(c, b)v(a, b)v = 1

for v = ∞ and v = p for all prime factors p of abc. If

this criterion tells us a solution exists, one can just

search until one is found. Afterwards, I am sure

you are familiar with the method of sweeping

lines, whereby all the solutions can be constructed

from just one. In short, the existence oracle (which

is available) already provides us with a method

for “constructing” all solutions. A few years ago, I

was happy to discover that a similar phenomenon

occurs when the genus is at least two. That is to

say,

Observation 3. For equations of genus at least two,

relative to the existence problem, the full solution set

is computable as a function of f .

Incidentally, the computability of the solution

set for curves of higher genus is one of the two

most important questions regarding the arith-

metic of curves, the other being the BSD conjec-

ture. Usually, number-theorists like to consider

computability in a specific form, like a specific

bound on the size of the (numerators and de-

nominators of the) solutions in terms of some

simple algebraic invariants of f . This is the sub-

ject of the effective Mordell conjecture, or Vojta’s

conjecture, or the ABC conjecture, and so on.

Our theorem proceeds in a different direction,

and merely constructs an algorithm relative to the
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existence oracle. In particular, no bounds on size,

even relative ones, are obvious in this approach.

My motivation for pointing out this relative com-

putability in fact was to emphasise a different

perspective from the usual arithmetic-geometric

one, since an algorithm can be quite different

from a special kind of formula. An additional

remark is that if a more powerful decision oracle

is given, for example, allowing equations and

inequations, then the theorem is trivial. The only

interest comes from restricting the input to the

forms stated. Let us briefly recall how one proves

the theorem [2]. Given an equation, assume the

oracle tells us that a solution exists. Now search

in increasing order of size for a solution until we

find one (p, q). Then do a quick additional search

for more solutions with first coordinate p. Denote

by S the solution set we have found this way. Now

consider the two equations in three variables

f (x, y) = 0, (x − p)z − 1 = 0.

It is easy to see that the solutions to this system is

in bijection with the solutions of f = 0 minus the

ones that we have found. In geometric language,

we have embedded our curve into three space in

such a way that the set S has been sent out to

infinity. That is, if

X ⊂ A2

is our curve, then we have embedded X into

P
3 so that if H denotes the plane at infinity

then X ∩ H = S. Now consider projections π :

P
3 \ {c} −→ P2 from some rational point c ∈ H.

Then H will map to a line in P2, which we can

then use as the new line at infinity. Furthermore,

there always exists a projection such that X is

mapped birationally onto its image. But the tricky

point is that we would like X \ S to be mapped

bijectively on rational points onto an affine plane

curve X′ which will then be defined by a new

equation h(x, y) = 0 with exactly |S| solutions less

than f = 0. Now the existence of a c that will

do the trick is a nice consequence of Hilbert’s

irreducibility theorem and rather pleasant plane

geometry. Hilbert’s theorem comes in because it

may not be possible to find a projection that is

bijective on all points, but it is always possible to

find one bijective on rational points. Furthermore,

for any given point c, it is possible to check

algorithmically whether or not the projection from

c satisfies this criterion. One need only see if it

lies on at most finitely many secants to X and

then, actually find those secants and check if any

of them are rational. All of this can be achieved

using standard computational algebra programs.

In this manner, searching exhaustively, one locates

the desired c. Now one applies the oracle to h = 0

and proceeds. The point of this discussion is that

for curves of genus different from 1, the existence

oracle is indeed very powerful. Not only does

it give an oracle for the finiteness problem, it

provides us with a computable function for the

solution set, where the genus zero case of course

is in a somewhat imprecise sense.

Let us turn now to curves of genus one. As

far as the decision problems themselves are con-

cerned, this case is the most interesting since the

status of my guess is not obvious just from the

classification. Therefore, I was very pleased when

Lou Van Den Dries pointed out to me that

Theorem 4 (Van Den Dries). For curves of genus

1, Guess 2 is correct.

Combined then with the previous observa-

tions, we conclude that the guess is true for all

curves. The idea is that if the oracle tells us a

solution exists, and we find one, then we are in

the situation of an elliptic curve. (Here, I ignore

the subtlety that the curve may be singular. This

eventuality can easily be accommodated.) Then

our equation has infinitely many solutions if and

only if the elliptic curve has a rational point of in-

finite order. But the rational points of finite order

can be readily found using a theorem of Nagell

and Lutz. Having done that, we can eliminate

all of them using the same trick as that outlined

above for higher genus curves. Then applying the

oracle to the new equation finishes the job. In

spite of the simplicity of this remark, the result

is that we have a rather tidy picture in the case

of curves. Recall again that the existence of points

of infinite order on an elliptic curve is very hard

to determine. An algorithm for achieving this is

a major consequence of the BSD conjecture. So

it is rather interesting that an existence oracle

serves the same purpose. A few years ago, I asked

John Tate his opinion on the existence problem

for genus one curves, whereupon he replied that

it should be on the same order of difficulty as

BSD. In fact, it is a somewhat subtle fact that BSD

also does give us an existence oracle and and a
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finiteness oracle for arbitrary curves of genus one.

That is to say, we have the implications:

BSD � existence oracle for curves of genus one

�
�
�
��

oracle for curves of genus one

�
finiteness

The important point here is that the vertical arrow

does not require BSD. Since the finiteness oracle

(at least for elliptic curves) is often thought of

as the major application of BSD, the arrow we

have filled in can be taken as vindication of Tate’s

intuition. In other words, it is something of a

weak implication

existence oracle for curves of genus one · · ·
� BSD

I hope the above discussion has already given you

some sense of why I feel the existence oracle to

be a very powerful thing in the study of rational

solutions. But I should still explain a little about

the reasoning behind my guess. It has to do with

the geometric structure underlying the existence

of infinitely many points. There is a conjecture of

Lang predicating that most of the rational points

of any given variety are concentrated inside a

specific geometric locus. That is, given a variety

X, denote by E ⊂ X the Zariski closure in X of

the images of all non-constant rational maps from

group varieties. (Here, I mean varieties that have

the structure of an algebraic group over C.) This

is called by Lang the exceptional set of X. Then

Lang’s conjecture says that X\E has finitely many

rational points. If true, one need only examine E to

decide the finiteness question. Of course, there is

the question of algorithmically finding E from X,

but the overall picture of the classification theory

of algebraic varieties makes it hard to believe

that E might not be a computable function of X.

(Here, I am again revealing my own naivete as

an ordinary mathematician.) For E itself, well, the

structure of the decision problem is not entirely

clear. However, group varieties themselves do

have the property that a decision oracle gives a

finiteness oracle, either for trivial reasons (they

might be geometrically rational varieties) or for

deep ones (BSD). The precise location of my guess

then is that this property should be inherited

by images of group varieties and eventually the

whole exceptional set. At some later time, I hope

to think about this issue seriously enough to

remove the tentative nature of this discussion. In

the meantime, I hope it is at least clear enough

that the relative decidability question for rational

points really does tie in to central problems of

Diophantine geometry. Perhaps I can close with

one other question that I am sure some of you

have asked already in the course of this lecture, if

not before. What about the converse implication?

That is, either for integral or rational solutions,

is the existence problem decidable relative to the

finiteness problem? Because of the dummy vari-

able trick, there is of course a positive answer for

the general problem. But it is of interest to ask this

question in a limited context, for example, after

fixing the number of variables. Even then, I would

guess that this question is less natural than the

one we’ve been discussing from the perspective

of recursion theory. However, for the arithmetic

of rational points on curves, a positive answer

would be extremely powerful. After all, we do

have a finiteness oracle for curves of genus not

equal to 1, and for all curves if we assume BSD.
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