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1. Classical Lp-space and Fourier Analysis

Most of the people with a background of real

analysis from undergraduate or graduate courses

must be familiar with the concept of Lp-spaces.

For a given measure space (X,Σ, µ) we define

Lp(X, µ) as follows.
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Here, || · ||ess-sup refers to the essential supremum

norm. In particular, for a counting measure µ we

denote Lp(X, µ) by ℓp(X).

Lp-spaces are Banach spaces with respect to

the p-norm and are essential tools for any kind

of analysis. Among those Lp-spaces the cases of

p = 1, 2,∞ are, of course, in special positions. We

understand L2-spaces as Hilbert spaces with in-

ner product, and L∞-spaces are commutative von

Neumann algebras with respect to pointwise mul-

tiplication. Lastly, L1-space is the predual space

of L∞-space. These Lp-spaces are closely related

to various analysis problems, and we can find

good examples from Fourier analysis. Now we

consider Fourier transform F defined on the circle

group T. For an integrable function f : T → C

we define its Fourier transform F f as a sequence

F f = (F f (n))n∈Z indexed by Z, where

F f (n) =
1

2π

� 2π

0
f (t)e−int dt.

Fourier transform F behaves according to Lp-

space. The Plancherel theorem says

F : L2

�

T,
1

2π
dt

�

→ ℓ2(Z)

is an onto isometry, and the Hausdorff–Young

inequality says for 1 ≤ p ≤ 2 and 1
p +

1
q = 1 the

map

F : Lp

�

T,
1

2π
dt

�

→ ℓq(Z)

is a contraction (i.e. operator norm decreasing).

The above exploits two important examples of Lp-

spaces, namely Lp-spaces coming from probabil-

ity measures and the ones coming from discrete

measures.

Non-commutative Lp-spaces are generalisa-

tions of classical Lp-spaces in a non-commutative

way. In this article we would like to give a

very gentle introduction of non-commutative Lp-

spaces focusing on a few simple cases and con-

sider applications to quantum spaces. Here, the

term “quantum space” is not defined rigorously,

but implies well-known examples such as locally

compact quantum groups and non-commutative

torus. These quantum spaces are described in

operator algebras such as C∗-algebras and von

Neumann algebras. In order to consider analysis

problems on those spaces we need some kind of

function spaces different from classical Lp-spaces.

This role can be taken by non-commutative Lp-

spaces, which we will see in the sequel.

2. Non-commutative Lp-spaces

Let us take a look back of classical Lp-spaces.

When a measure space (X,Σ, µ) is given the al-

gebra L∞(X, µ) of essentially bounded measurable

functions can be understood as an algebra of

operators via the following isometric embedding.

Φ : L∞(X, µ)→ B(L2(X, µ)), f �→Mf .

Here, B(H) means the algebra of bounded linear

map acting on a Hilbert space H and Mf is the

multiplication operator with respect to f given

by Mf (g) = fg, g ∈ L2(X, µ). Thus, L∞(X, µ) is

a commutative subalgebra of B(L2(X, µ)) closed

under taking adjoint. Moreover, it contains the

identity operator and closed under a certain topol-

ogy called the weak operator topology. We call a

subalgebra of B(H) satisfying all the properties we

mentioned about L∞(X, µ) except commutativity,

a von Neumann algebra. Now we need a special

functional ϕ : f �→
�

X
f dµ on L∞(X, µ) in order to
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construct Lp(X, µ). Note that this functional is, in

general, not defined on the whole algebra. Thus,

it is natural to expect a functional φ on a von

Neumann algebra M which will play the same

role of ϕ. For simplicity we will consider the

following two cases.

2.1. Schatten class

The first example is the caseM = B(H). In this case

we may take φ to be the trace Tr. Here, Tr is the

functional defined by TrX =
∑

i�Xhi, hi�, X ∈ B(H),

for an orthonormal basis {hi}i∈I of H. Note that

when H is infinite dimensional it is not defined

on the whole B(H). Now, the corresponding non-

commutative Lp-space Lp(M), 1 ≤ p < ∞ is defined

by

Lp(B(H)) = {X ∈ B(H) : Tr(|X|p)
1
p < ∞}.

The space Lp(B(H)) is called the Schatten class on

H and we usually denote it by Sp(H). This case

is a non-commutative counterpart of a sequential

ℓp(X)-space coming from discrete measures. In

particular, when dim H = n < ∞, the spaces

B(H) and Sp(H) are usually denoted by Mn and

S
p
n, which are nothing but the space of all n × n

complex matrices as sets.

2.2. Non-commutative (W∗-) probability

space

When there is a special functional (i.e. normal,

faithful and tracial state) φ on a von Neumann al-

gebra M we call (M, φ) a non-commutative (W∗-)

probability space. Here, φ being state means that

φ is linear, φ(X∗X) ≥ 0, X ∈ M and φ(I) = 1.

Moreover, φ being tracial means φ(XY) = φ(YX),

X, Y ∈ M. In this case φ is defined on the whole

algebra M and the p-norm can be defined on

M by ||X||p := φ(|X|p)
1
p , X ∈ M. Now the corre-

sponding non-commutative Lp-space Lp(M, φ) is

defined as the completion of (M, || · ||p). This case

a non-commutative counterpart of the classical Lp-

spaces coming from probability measures.

The above kind of von Neumann algebra can

be produced out of any discrete group G. Let λ :

G → B(ℓ2(G)), λ(x)f (y) = f (x−1y), f ∈ ℓ2(G), x, y ∈ G

be the left regular representation of G. Then, the

group von Neumann algebra VN(G) generated by

the set of operators {λ(x) : x ∈ G} is equipped

with a natural normal, faithful, and tracial state

φ given by φ(
∑

x∈G axλ(x)) = ae, i.e. the functional

of evaluating the coefficient of the identity if we

regard (ax)x∈G as the “Fourier coefficient” of the

operator
∑

x∈G axλ(x).

2.3. General case

There are many von Neumann algebras without

such a good tracial functional, which we call type

III von Neumann algebras. A definition of non-

commutative Lp-spaces that also can be applied

to type III cases by U Haagerup in 80’s ([4]).

The general non-commutative Lp-spaces share

many properties of classical Lp-spaces. For exam-

ple, Hölder inequality, the duality between Lp and

Lq for 1/p + 1/q = 1, and complex interpolation

still hold in this non-commutative context ([7]).

Of course, not everything is good as before, for

example, non-commutative Lp-spaces are no more

lattices with respect to the natural order structure.

3. Analysis on Quantum Spaces and

Non-commutative Lp-spaces

In the following we will take a look at a few cases

of Lp-analysis problems on quantum space using

non-commutative Lp-spaces.

3.1. Fourier analysis on the dual of

locally compact groups

For a locally compact group G we can similarly

get the group von Neumann algebra VN(G) as

in 2.2. The non-commutative L1-space L1(VN(G))

associated to VN(G) can be understood as a sub-

space of C0(G) (the space of continuous functions

on G vanishing at infinity) and is known to be

a commutative Banach algebra with respect to

pointwise multiplication. The space L1(VN(G)) is

called the Fourier algebra on G and usually de-

noted by A(G). The Fourier algebra is an im-

portant object in abstract harmonic analysis re-

flecting many properties of the underlying group.

For example, the spectrum, specA(G), of G is

homeomorphic to G itself, and it is known that

A(G) is amenable as a Banach algebra together

with an operator space structure if and only if

G is amenable as a locally compact group ([8]).

Recently, there has been an investigation on the

relationship between the homological properties

of Lp(VN(G)) as a left module of A(G) and the

properties of G as a locally compact group ([3]).
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In general, the Banach space structure of

Lp(VN(G)) is complicated, but the case of compact

G is relatively simple. From the representation

theory of compact groups it is well-known that

VN(G) is isomorphic to a direct sum of matrix

algebras

VN(G) �
�

π∈�G

Mdπ .

The associated non-commutative Lp-space is the

ℓp-direct sum of the corresponding Schatten

classes

ℓp-
�

π∈�G

S
p

dπ
.

Here, �G is the collection of irreducible unitary

representations of G (actually, their equivalence

classes) and dπ is the dimension of π ∈ �G.

On the other hand, the case of discrete groups

gets a lot of attention of operator algebraists,

especially the case of free group Fn with n ≥ 2

generators. A recent research about the Laplacian

coming from the natural length function on Fn

and their Riesz transform is notable ([5]).

3.2. Fourier analysis on non-commutative

torus

Very recently, Chen/Xu/Yin ([2]) successfully

transferred many Fourier analysis problems hold-

ing on d-dimensional torus Td, d ≥ 2 to the setting

of non-commutative d-torus Td
θ
. When d = 2 for an

irrational number θ the non-commutative 2-torus

T2
θ

is the universal C∗-algebra generated by two

unitaries U, V satisfying the commutation relation

UV = e2πiθVU. On T2
θ

we have a natural (faithful)

tracial state φ given by

φ

















�

n,m∈Z

an,mUnVm

















= a0,0.

We denote the von Neumann algebra generated

by T2
θ

in the GNS-representation of φ by L∞(T2
θ
).

Chen/Xu/Yin considered several topics like mean

convergence of Fourier series and maximal in-

equality on the corresponding non-commutative

Lp-spaces Lp(T2
θ
). Moreover, they showed that

Fourier multipliers on Lp(T2
θ
) are essentially the

same as the ones on Lp(T2) when we restrict our

attention to completely bounded multipliers.

3.3. Hypercontractivity on

non-commutative probability spaces

The free von Neumann algebra is another exam-

ple of non-commutative (W∗-) probability space.

The sum of the left creation operator and the

left annihilation operator on the free Fock space

is called the free gaussian. The free gaussians

generate the free von Neumann algebra, which is

known to be isomorphic to the group von Neu-

mann algebra with respect to free groups. On the

free von Neumann algebras there a tracial state

coming from the vacuum vector, so that we get

a non-commutative (W∗-) probability space. As

in the classical case we can define free Ornstein–

Uhlenbeck semigroup Pt, so that we are naturally

interested in its hypercontractivity problem. Pt is

called hypercontractive if there is tp,q > 0 such that

Pt : Lp → Lq, 1 < p ≤ q < ∞ is a contraction for

all t ≥ tp,q. The solution of this problem has been

given by P Biane ([1]), and the problem has been

extended to type III case in [6].

4. Epilogue

Quantum spaces are getting more and more at-

tentions from various fields of mathematics and

physics. So far, researches on quantum spaces

have been focusing mainly on algebraic aspects

and less on analytic aspects. This is partly because

the objects themselves are described in (opera-

tor) algebraic language and the tools for non-

commutative analysis was not available in the be-

ginning. However, in the past 15 years the under-

standing of non-commutative Lp-spaces have been

extensively increased by the researchers including

G Pisier, M Junge and Q Xu, which allowed

us to answer some of the analysis problems on

quantum spaces. The list of unsolved problems

in the quantum setting is a long one compared

to the classical situation. We finish this short ar-

ticle with a recommendation of the survey paper

[7] Pisier/Xu for the readers interested in more

details of non-commutative Lp-spaces.
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