
Approximating Integrals in
High Dimensions — An Informal Report

Ian H Sloan

1

Approximating Integrals in High
Dimensions — An Informal Report

Ian H Sloan

1. Introduction

For half a century or more many researchers

have grappled with the problem of numerical

integration in many dimensions — on the one

hand to understand what is possible, on the other

to construct and analyse effective algorithms. This

is an informal and rather personal account of one

part of that effort.

For simplicity, we consider only the problem

of integration over the unit cube in s dimensions.

Thus the task is to approximate the integral

Is(f) =

∫

[0,1]s

f (x) dx, (1)

where s is an integer greater than 1, and f is a

given continuous function (or a function from a

given class), hopefully having also some addi-

tional smoothness property. The interesting case

is when s is large, say in the hundreds or even

thousands.

The simplest kind of s-dimensional integration

rule is just a product of 1-dimensional rules,

obtained by using a favourite quadrature rule

(say an m-point Gauss rule) in each dimension.

But when s is large no such product rule is

feasible, since the total number of points for the

s-dimensional rule is then n = ms, an impossibly

large number for large s: if s is 100 then even a

product of 2-point Gauss rules would need 2100

function evaluations, a number unlikely ever to

be feasible on a conventional computer.

2. Quasi-Monte Carlo Rules

In this short report we consider only n-point

integration rules of the form

Qn,s(f) = Qn,s(t0, . . . , tn−1; f) =
1

n

n−1
∑

i=0

f (ti), (2)

that use prescribed points t0, . . . , tn−1 ∈ [0, 1]s. A

rule of this form is called a Quasi-Monte Carlo (or

QMC) rule. In contrast, if the points t0, . . . , tn−1 ∈

[0, 1]s are independent random samples from a

uniform distribution on [0, 1]s then we have the

simplest Monte Carlo rule. Monte Carlo methods

have many virtues, the most prominent being that

smoothness of the integrand f is not needed: all

that is needed is that f belong to L2([0, 1]s). But

the Monte Carlo method suffers from slow con-

vergence: the root mean square error in the sense

of expectation has the celebrated convergence rate

of 1/
√

n. Our aim is to do better than that.

The central question for the QMC method is

how to choose the points t0, . . . , tn−1. That is a big

subject, explored in a recent survey [1]. But here

the view is personal and selective, so we can be

brief.

There are now two main strategies for choos-

ing QMC points, which we may call the low

discrepancy and lattice approaches. Here the focus

is on the second.

3. Lattice Rules

In the simplest form of lattice rule, the only

kind considered here, the points are given by the

simple formula

ti =

{

iz

n

}

, i = 0, 1, . . . , n − 1, (3)

where z ∈ Zs, known as the generating vector, is

an integer vector of length s having no factor in

common with n, and the braces around a vector

indicate that we take the fractional part of each

component in the vector.

Lattice methods began life in the 1950s in the

hands of number theorists, who obtained many

beautiful results, especially for functions that are

1-periodic with respect to each component of x.

For surveys of the classical results see [4] and [5].

Those results, based on Fourier analysis, are of

limited practical use, because high-dimensional

integrals arising from applications are usually

not naturally periodic; and forcing periodicity

through a change of variables has a tendency to

turn easy high-dimensional problems into diffi-

cult ones. In the developments reported here we

make no periodicity assumption.

The point set (3) depends entirely on the choice

of the integer vector z. How should z be chosen?

Clearly there is no sense in allowing a component

July 2013, Volume 3 No 3 15

Asia Pacific Mathematics Newsletter

APMN Vol3 No3.indd 15 8/15/2013 2:06:01 PM

2

of z to lie outside the range 0, 1, . . . , n − 1. Within

these constraints, how are we to find a good

choice for z? Up to the present time no closed

formula for a good generating vector z (whatever

“good” might mean) is known, beyond s = 2. And

intuition seems of little use in high dimensions.

To find a good z for such an s we need some

mathematical structure.

4. Worst Case Error, and a Norm with

Weights

We assume that our functions f all belong to some

Hilbert space H, and then choose a generating

vector z to minimise (or at least makes small)

the worst case error in this function space. The

worst case error in the space H of a QMC rule

Qn,s(P; ·) using the point set P = {t0, t1, · · · , tn−1} is

the largest error for f in the unit ball of H, that is

en,s(P; H) := sup
�f �H≤1

|Is(f) −Qn,s(P; f)|.

So now we have again changed the problem,

this time to one of choosing a good function space

H. It turns out that a good choice is to take

H to consist of s-variate absolutely continuous

functions whose mixed first derivatives are square-

integrable. More precisely, we take

H = Hs,γ

:=

�

f ∈ L2([0, 1]s) :

�

[0,1]|u|

�

�

�

�

�

�

∂|u|

∂xu
f (xu; 0)

�

�

�

�

�

�

2

dxu < ∞ ∀ u ⊆ {1 : s}















,

where {1 : s} is shorthand for {1, 2, . . . , s}, while xu
denotes the components xj of x with j ∈ u, and

(xu; 0) denotes x with all components xj with j � u

set equal to 0, which we refer to as the anchor.

But how exactly should we define the norm in

H? It turns out to be a fruitful idea to introduce

positive numbers called weights into the norm: in

the most general case we introduce one weight γu
for each u ⊆ {1 : s} (with γ∅ = 1), taking the norm

of Hs,γ to be

�

�

�f
�

�

�

s,γ
:=
�

�

u⊆{1:s}

γ−1
u

�

[0,1]|u|

�

�

�

�

�

�

∂|u|

∂xu
f (xu; 0)

�

�

�

�

�

�

2

dxu

�1/2

.

Note that for f to be in the unit ball of Hs,γ,

any term in the sum over u with a small weight

γu must also have a small mixed first derivative

(∂|u|/∂xu)f . Thus the weight parameters describe

the relative importance of different subsets of the

variables x1, . . . , xs: small weights correspond to

unimportant subsets.

The space Hs,γ is of course a Hilbert space, with

the obvious inner product, which we denote by

�·, ·�s,γ. Less obviously, Hs,γ is a reproducing kernel

Hilbert space with the relatively simple kernel

Ks,γ(x, y) =
�

u⊆{1:s}

γu

�

j∈u

min (xj, yj).

That is to say, Ks,γ(x, y) is a symmetric function on

[0, 1]s×[0, 1]s with the property that Ks,γ(x, ·) ∈ Hs,γ,

and the reproducing property (easily verified for

s = 1)

f (x) = �Ks,γ(x, ·), f �s,γ ∀x ∈ [0, 1]s, f ∈ Hs,γ.

Why is the reproducing kernel property help-

ful? It is because in a reproducing kernel Hilbert

space Hs(K) with kernel K the worst case error is

computable, via the formula

e2
n,s(P; Hs(K)) =

�

[0,1]s

�

[0,1]s

K(x, y) dx dy

−
2

n

n−1
�

i=0

�

[0,1]s

K(ti, y) dy

+
1

n2

n−1
�

i=0

n−1
�

k=0

K(ti, tk).

This can easily be proved by simple Hilbert space

arguments together with the reproducing prop-

erty of the kernel.

But is the worst case error really computable

for our function space Hs,γ = H(Ks,γ), given that

the sum over u in our expression for Ks,γ con-

tains 2s terms? Clearly computations with general

weights γu are not feasible when s is large, but

they become so for some special cases. The origi-

nal weights introduced in [6] were of the product

form

γu =
�

j∈u

τj,

in which case it is easily seen that Ks,γ can be

expressed as the easily evaluated product

Ks,γ(x, y) =
s
�

j=1

�

1 + τj min (xj, yj)
�

.

Many results take an especially simple form in

the product case. In particular, the necessary and

sufficient condition established in [6] for the worst

case error to be bounded independently of s is just

∞
�

j=1

τj < ∞.

This condition fails spectacularly in the classical

case in which τj = 1 for all j, but is satisfied, for

example, if τj = 1/j2.

July 2013, Volume 3 No 316

Asia Pacific Mathematics Newsletter

APMN Vol3 No3.indd 16 8/15/2013 2:06:02 PM

3

Nevertheless, it has to be admitted that prod-

uct weights, in spite of their popularity, were

introduced for mathematical convenience, rather

than being guided by application. In this report

general weights have been retained, because cer-

tain non-product weights of so-called product and

order dependent or POD form, have arisen recently

in applications, see [2]. The POD weights have the

form

γu = Γ|u|

�

j∈u

τj, u ⊆ {1 : s},

where Γ0 = 1, Γ1, · · · , Γs are given positive num-

bers. As with product weights, computations with

POD weights turn out to be feasible (see below).

5. A Little Randomisation

It turns out to be useful, for reasons of both

theory and practice, to modify slightly the QMC

algorithm by introducing some randomisation:

specifically, we replace the lattice rule given by

(2) and (3) by the randomly shifted lattice rule

Qran
n,s (z; f) :=

1

n

n−1
�

i=0

f

��

iz

n
+ ∆

��

,

where ∆ is a random vector of length s drawn

from a uniform distribution on [0, 1]s. This has

some flavour of the Monte Carlo method: indeed

it reduces to the Monte Carlo method if n = 1.

In practice the randomly shifted lattice rule is

implemented, once z is chosen, by picking some

fixed number (say 10 or 30) of random (or rather

pseudo-random) shifts ∆k, and averaging the cu-

bature results for the separate shifts to obtain an

estimate of the integral, while using the spread of

the results to estimate the error, just as with the

Monte Carlo method.

The worst case error is now replaced by the

root mean square expected value of the error,

known as the shift-averaged worst case error,

esh
n,s(z; H) :=















E















sup
�f �H≤1

�

�

�Is(f) −Qran
n,s (z; f)

�

�

�

2





























1/2

.

For the case of our particular Hilbert space Hs,γ it

can be computed by the formula (see [1, Lemma

5.7])

esh
n,s(z; Hs,γ)

=



















�

∅�u⊆{1:s}

γu



















1

n

n−1
�

k=0

�

j∈u

�

B2

��

kzj

n

��

+
1

3

�

−

�

1

3

�|u|




































1/2

,

where B2(x) = x2 − x+ 1/6 is the Bernoulli polyno-

mial of degree 2. For the case of product weights

the expression reduces to the easily computable

esh
n,s(z; Hs,γ)

=



















−

s
�

j=1

�

1+
τj

3

�

+
1

n

n−1
�

k=0

s
�

j=1

�

1+τj

�

B2

��

kzj

n

��

+
1

3

��



















1/2

.

6. Good Lattice Rules Exist!

As explained below, we now know the following:

For every n there exists z ∈ {0, 1, . . . , n − 1}s such

that, for all λ ∈ (1/2, 1],

esh
n,s(z; Hs,γ)

≤

















1

ϕ(n)

�

∅�u⊆{1:s}

γλ
u













2ζ(2λ)

(2π2)λ
+

�

1

3

�λ










|u|
















1/(2λ)

. (4)

Here ζ(·) is the Riemann zeta function, and ϕ(n) is

the Euler totient function, that is, it is the number

of integers between 1 and n− 1 that are relatively

prime to n. If n is prime then φ(n) = n − 1, and in

that case the order of convergence is n−1/(2λ). We

would set λ = 1/2 if that were possible, because

then the order of convergence would be n−1, but

that is not possible because ζ(2λ) diverges as 2λ

approaches 1 from above. But the result shows

(since λ can be chosen arbitrarily close to 1/2) that

for every f ∈ Hs,γ the rate of convergence will

ultimately be arbitrarily close to n−1. Can good

rates of convergence be obtained independently of

dimension? The answer depends on the weights

γu: the answer is yes if the weights γu decay

sufficiently quickly.

7. Good Lattice Rules are (sometimes)

Constructible!

Lattice rules that achieve the bound (4) are in

principle constructible — indeed, the proof of (4)

(see [1, Theorem 5.9]) is by an inductive argument

based on an explicit construction. That construc-

tion is the so-called component by component (or

CBC) construction.

The idea of the CBC construction is that

the components of the generating vector z =

(z1, z2, . . . , zs) are determined one after the other,

starting with z1 = 1, with the successive com-

ponents zd for d = 2, . . . , s being minimisers of

a quantity related to the shift-averaged worst

case error for the d-dimensional problem. For

our particular choice of norm, the quantity to be

minimised in the case of general weights γ
u

is

not exactly the shift-averaged worst case error,

see [1, Theorem 5.9], but if we change slightly the

July 2013, Volume 3 No 3 17

Asia Pacific Mathematics Newsletter

APMN Vol3 No3.indd 17 8/15/2013 2:06:02 PM

Ian Sloan
University of New South Wales, Australia
I.Sloan@unsw.edu.au

Ian Sloan completed physics and mathematics degrees at Melbourne University, a
Master's degree in mathematical physics at Adelaide, and a PhD in theoretical atomic
physics (under the supervision of HSW Massey) at the University of London, finishing
in 1964. After a decade of research on few-body collision problems in nuclear physics,
his main research interests shifted to computational mathematics.

He was Head of the School of Mathematics in University of New South Wales and mem-
ber of the ARC's Research Grants Committee, and is a former President of the Australian
Mathematical Society. His awards/recognitions include Fellow of the Australian Academy
of Science, ANZIAM Medal, etc. In 2008 he was appointed an Officer of the Order
of Australia (AO). He is currently Deputy Director of MASCOS, the ARC Centre of
Excellence for Mathematics and Statistics of Complex Systems.

4

definition of the norm, to

�

�

�f
�

�

�

s,γ

:=

















�

u⊆{1:s}

γ−1
u

�

[0,1]|u|

�

�

�

�

�

�

�

[0,1]s−|u|

∂|u|

∂xu
f (xu; x−u) dx−u

�

�

�

�

�

�

2

dxu

















1/2

,

then the CBC algorithm precisely minimises the

shift-averaged worstcase error. Here x−u denotes

the components xj of x with j in {1 : s} but not

in u, so that now the components of x that do

not appear in the mixed derivative are integrated

out instead of being anchored at 0. The formula

for the shift-averaged worst case error is the

same as before, except that the 1
3 terms are now

replaced by zero. The bound achieved by the CBC

construction (proved inductively in [1, Theorem

5.8]) is exactly (4), except that again the 1
3 term is

replaced by zero. Finally, fast CBC construction

is possible for both product weights and POD

weights, see respectively [1, Section 5.5] and [1,

Section 5.6].

8. Conclusion

We have seen that lattice rules for high dimen-

sional integration are at an interesting stage of de-

velopment: for given dimensionality s and given

weights (γu) we can in principle construct a gener-

ating vector z for which the order of convergence

for f in the unit ball of Hs,γ is arbitrarily close

to O(n−1), with an implied constant that is known

explicitly for a given convergence rate, and that is

independent of the dimensionality s if the weights

are small enough. The construction is feasible for

both product weights and POD weights.

This informal report is incomplete in many

ways. Not reported on are higher order QMC

methods, which aim to achieve a rate of con-

vergence faster than O(n−1). Also not reported

is infinite-dimensional integration, a topic now

showing high levels of activity. We have not done

justice to the important work on fast implementa-

tion of CBC, initiated by Dirk Nuyens and Ronald

Cools. We have not discussed how the weights

should be chosen for a given practical problem.

We have not considered lattice rules that are

extensible in number of points or dimension. We

have not considered integration over unbounded

regions. All these matters are considered in [1].

Finally, many people have contributed to the

recent developments outlined here, too many to

mention them all, but especially I want to ac-

knowledge Henryk Woźniakowski, Stephen Joe,

Frances Kuo and Josef Dick. I am grateful to

these and all others for their contributions, and to

the Australian Research Council for its sustained

support.

References

[1] J. Dick, F. Y. Kuo and I. H. Sloan, Numerical integra-
tion in high dimensions — the quasi-Monte Carlo
way, Acta Numerica, 13 (2013) 133–288.

[2] F. Y. Kuo, C. Schwab and I. H. Sloan, Quasi-
Monte Carlo finite element methods for a class of
elliptic partial differential equations with random
coefficients, SIAM J., Numerical Analysis, 50 (2012)
3351–3374.

[3] F. Y. Kuo and I. H. Sloan, Lifting the curse
of dimensionality, Notices of the AMS 52 (2005)
1320–1328.

[4] H. Niederreiter, Quasi-Monte Carlo methods and
pseudo random numbers, SIAM (1992).

[5] I. H. Sloan and S. Joe, Lattice Methods for Multiple
Integration (Oxford University Press, 1994).

[6] I. H. Sloan and H. Woźniakowski, When are
quasi-Monte Carlo algorithms, efficient for high-
dimensional integrals? J. Complexity 14 (1998)
1–33.

July 2013, Volume 3 No 318

Asia Pacific Mathematics Newsletter

APMN Vol3 No3.indd 18 8/15/2013 2:06:03 PM

