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Abstract. In this short paper we give a popular intro-
duction to the theory of p-adic numbers. We give some
properties of p-adic numbers distinguishing them to
“good” and “bad”. Some remarks about applications
of p-adic numbers to mathematics, biology and physics
are given.

1. p-Adic Numbers

p-adic numbers were introduced in 1904 by the

German mathematician K Hensel. They are used

intensively in number theory. p-adic analysis was

developed (mainly for needs of number theory)

in many directions, see, for example, [20, 50].

When we write a number in decimal, we can

only have finitely many digits on the left of the

decimal, but we can have infinitely many on the

right of the decimal. They might “terminate” (and

become all zeros after some point) but they might

not. The p-adic integers can be thought of as

writing out integers in base p, but one can have

infinitely many digits to the left of the decimal

(and none on the right; but the rational p-adic

numbers can have finitely many digits on the

right of the decimal). For example, the binary

expansion of 35 is 1·20
+1·21

+0·22
+0·23

+0·24
+1·25,

often written in the shorthand notation 1000112.

One has 1 = 0, 111111111 . . .2 = 0, (1)2. But what is

. . . 111111, 02 = (1), 02? Compute (1), 02 + 1:

. . . 111111, 02

+. . .000001, 02

. . . 000000, 02

Hence (1), 02 = −1. This equality can be written as

(1), 02 = lim
n→∞

n−1
�

i=0

2i
= lim

n→∞
(2n − 1) = −1. (1)

This limit equivalent to limn→∞ 2n
= 0. In real

case one has limn→∞ qn
= 0 if and only if absolute

value |q| is less than 1. Remember that to define

real numbers one considers all limit points of

sequences of rational numbers, using the absolute

value as metric.

To give a meaning of the limit (1), one has

to give a new absolute value | · |∗, on the set of

rational numbers, such that |2|∗ < 1. This is done

as follows. Let Q be the field of rational numbers.

Every rational number x � 0 can be represented

in the form x = pr n
m , where r, n ∈ Z, m is a positive

integer, ( p, n) = 1, ( p, m) = 1 and p is a fixed prime

number. The p-adic absolute value (norm) of x is

given by

|x|p =














p−r, for x � 0,

0, for x = 0.

The p-adic norm satisfies the so called strong

triangle inequality

|x + y|p ≤ max{|x|p, |y|p}, (2)

and this is a non-Archimedean norm.

This definition of |x|p has the effect that high

powers of p become “small”, in particular |2n|2 =
1/2n. By the fundamental theorem of arithmetic,

for a given non-zero rational number x there is a

unique finite set of distinct primes p1, . . . , pr and

a corresponding sequence of non-zero integers

a1, . . . , an such that x = pa1

1
. . . par

r . It then follows

that |x|pi
= p−ai

i
for all i = 1, . . . , r, and |x|p = 1 for

any other prime p � {p1, . . . , pr}.
For example, take 63/550 = 2−1 · 32 · 5−2 · 7 · 11−1

we have

�

�

�

�

�

63

550

�

�

�

�

�

p
=















































































2, if p = 2,

1/9, if p = 3,

25, if p = 5,

1/7, if p = 7,

11, if p = 11,

1, if p ≥ 13.

We say that two norms � · �1 and � · �2 on Q are

equivalent if there exists α > 0 such that

� · �α1 = � · �2.

It is a theorem of Ostrowski (see [41]) that

each absolute value on Q is equivalent either

to the Euclidean absolute value | · |, the trivial

absolute value, or to one of the p-adic absolute

values for some prime p. So the only norms on
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Q modulo equivalence are the absolute value,

the trivial absolute value and the p-adic absolute

value which means that there are only as many

completions (with respect to a norm) of Q.

The p-adic absolute value defines a metric

|x − y|p on Q. Two numbers x and y are p-adically

closer as long as r is higher, such that pr divides

|x − y|p. Amazingly, for p = 5 the result is that 135

is closer to 10 than 35.

The completion of Q with respect to p-adic

norm defines the p-adic field which is denoted

by Qp. Any p-adic number x � 0 can be uniquely

represented in the canonical form

x = pγ(x)(x0 + x1p + x2p2
+ · · · ),

where γ = γ(x) ∈ Z and xj are integers, 0 ≤ xj ≤
p − 1, x0 > 0, j = 0, 1, 2, ... (see more detail [31,

50, 54]). In this case |x|p = p−γ(x). The set of p-adic

numbers contains the field of rational numbers Q

but is different from it.

Using canonical form of p-adic numbers, simi-

larly as real numbers, one makes arithmetic oper-

ations on p-adic numbers (see for example, [41]).

2. “Good” Properties of p-Adic Numbers

The ultra-metric triangle inequality, i.e. (2), under-

lies many of the interesting differences between

real and p-adic analysis. The following properties

of p-adic numbers make some directions of the

p-adic analysis more simple than real analysis:

1. All triangles are isosceles.

2. Any point of ball D(a, r) = {x ∈ Qp : |x−a|p ≤ r}
is center. Each ball has an empty boundary. Two

balls are either disjoint, or one is contained in the

other.

3. | · |p1
� | · |p2

if p1 � p2. This means that each

prime number p generates its own field of p-adic

numbers Qp.

4. x2
= −1 has a solution x ∈ Qp if and only if

p = 1 mod 4.

5. A sequence {xn} in Qp is a Cauchy sequence

if and only if |xn+1 − xn|p → 0 as n→ ∞.

This has the useful corollary that a sum con-

verges if and only if the individual terms tend to

zero:

6. (A student’s dream)
∑∞

n=1 an < ∞ if and only

if an → 0.

Since |n!|p → 0 we have, for example,

∞
∑

n=0

( − 1)nn!(n + 2) = 1,
∞
∑

n=0

( − 1)nn!(n2 − 5) = −3.

The sum
∑∞

n=0 n! exists in every Qp. The follow-

ing problem has been open since 1971.

Problem. Can
∑∞

n=0 n! be rational for some

prime p?

It is not known if
∑∞

n=0 n! � 0 in every Qp.

7. For any x ∈ Q, we have

|x|
∏

p:prime

|x|p = 1.

This formula have been used to solve several

problems in number theory, many of them us-

ing Helmut Hasse’s local-global principle, which

roughly states that an equation can be solved

over the rational numbers if and only if it can be

solved over the real numbers and over the p-adic

numbers for every prime p.

3. “Bad” Properties of p-Adic Numbers

1. Qp is not ordered.

2. Qp is not comparable with R, for example√
7 � Q5, but i =

√
−1 ∈ Q5.

3. Qp is not algebraically closed.

But | · |p can be extended uniquely to the

algebraic closure Qa
p and the completion of (Qa

p, |·|p)

is called Cp, the field of the p-adic complex num-

bers. Cp is no locally compact, but separable and

algebraically closed.

Now define the functions expp (x) and logp (x).

Given a ∈ Qp and r > 0 put

B(a, r) = {x ∈ Qp : |x − a|p < r}.

The p-adic logarithm is defined by the series

logp(x) = logp(1 + (x − 1)) =
∞
∑

n=1

( − 1)n+1 (x − 1)n

n
,

which converges for x ∈ B(1, 1);

The p-adic exponential is defined by

expp (x) =
∞
∑

n=0

xn

n!
,

which converges for x ∈ B(0, p−1/(p−1)).

Let x ∈ B(0, p−1/(p−1), then

| expp(x)|p=1, | expp(x)−1|p= |x|p, | logp(1+x)|p= |x|p,

logp( expp(x)) = x, expp( logp(1 + x)) = 1 + x.

4. Some “good” functions become “bad”. For

example exp (x) is very “good” function on R, but

as we seen above expp(x) is defined only on ball

B(0, p−1/(p−1)).
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4. Remarks about Applications

When the p-adic numbers were introduced they

considered as an exotic part of pure mathematics

without any application (see for example [41,

42, 50, 56] for applications of p-adic numbers

to mathematics). Since p-adic numbers have the

interesting property that they are said to be close

when their difference is divisible by a high power

of p the higher the power the closer they are.

This property enables p-adic numbers to encode

congruence information in a way that turns out

to have powerful applications in number theory

including, for example, in the famous proof of

Fermat’s Last Theorem by Andrew Wiles (see [42,

Chap. 7]).

What is the main difference between real and

p-adic space-time? It is the Archimedean axiom.

According to this axiom any given large segment

on a stright line can be surpassed by successive

addition of small segments along the same line.

This axiom is valid in the set of real numbers and

is not valid in Qp. However, it is a physical axiom

which concerns the process of measurement. To

exchange a number field R to Qp is the same as

to exchange axiomatics in quantum physics (see

[31, 56]).

In 1968 two pure mathematicians, A Monna

and F van der Blij, proposed to apply p-adic

numbers to physics. In 1972 E Beltrametti and

G Cassinelli investigated a model of p-adic valued

quantum mechanics from the positions of quan-

tum logic. Since 80th p-adic numbers are used in

applications to quantum physics. p-adic strings

and super strings were the first models of p-adic

quantum physics (see, for example, [17, 29, 50,

54]). The interest of physicists to p-adic numbers

is explained by the attempts to create new models

of space-time for the description of (fantastically

small) Planck distances.

There are some evidences that the standard

model based on real numbers is not adequate

to Planck’s domain. On the other hand, some

properties of fields of p-adic numbers seem to

be closely related to Planck’s domain. In partic-

ular, the fields of p-adic numbers have no order

structure.

The pioneer investigations on p-adic string

theory induced investigations on p-adic quantum

mechanics and field theory (see the books [31, 54,

55]). This investigations induce a development of

p-adic mathematics in many directions: theory of

distributions [6, 31], differential and pseudodif-

ferential equations [32, 56], theory of probability

[31, 56] spectral theory of operators in a p-adic

analogue of a Hilbert space [7, 8, 33].

The representation of p-adic numbers by se-

quences of digits gives a possibility to use this

number system for coding of information. There-

fore p-adic models can be used for the description

of many information processes. In particular, they

can be used in cognitive sciences, psychology and

sociology. Such models based on p-adic dynamical

systems [3–5].

The study of p-adic dynamical systems arises

in Diophantine geometry in the constructions

of canonical heights, used for counting rational

points on algebraic varieties over a number field,

as in [21].

There most recent monograph on p-adic dy-

namics is Anashin and Khrennikov [9]; nearly a

half of Silverman’s monograph [52] also concerns

p-adic dynamics.

Here are areas where p-adic dynamics proved

to be effective: computer science (straight line

programs), numerical analysis and simulations

(pseudorandom numbers), uniform distribution

of sequences, cryptography (stream ciphers, T-

functions), combinatorics (Latin squares), au-

tomata theory and formal languages, genetics.

The monograph [9] contains the corresponding

survey. For a newer results see recent papers and

references therein: [10, 14, 15, 28, 36, 37, 38, 48, 51].

Moreover, there are studies in computer science

and cryptography which along with mathematical

physics stimulated in 1990th intensive research in

p-adic dynamics since it was observed that major

computer instructions (and therefore programs

composed of these instructions) can be considered

as continuous transformations with respect to the

2-adic metric, see [11, 12].

In [33, 53] p-adic field have arisen in physics in

the theory of superstrings, promoting questions

about their dynamics. Also some applications

of p-adic dynamical systems to some biological,

physical systems has been proposed in [3, 4, 5,

22, 23, 33, 35]. Other studies of non-Archimedean

dynamics in the neighborhood of a periodic point

and of the counting of periodic points over global

fields using local fields appear in [39, 47]. It is

known that the analytic functions play important

role in complex analysis. In the p-adic analysis
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the rational functions play a role similar to that of

analytic functions in complex analysis [49]. There-

fore, there naturally arises a question on study the

dynamics of these functions in the p-adic anal-

ysis. On the other hand, these p-adic dynamical

systems appear while studying p-adic Gibbs mea-

sures [26, 24, 44–46]. In [18, 19] dynamics on the

Fatou set of a rational function defined over some

finite extension of Qp have been studied, besides,

an analogue of Sullivan’s no wandering domains

theorem for p-adic rational functions which have

no wild recurrent Julia critical points was proved.

In [27] the behaviour and ergodicity of a p-adic

dynamical system f (x) = xn in the fields of p-adic

numbers Qp and complex p-adic numbers Cp was

investigated. Firstly, the problem of ergodicity of

perturbed monomial dynamical systems which

was posed in these papers and which stimulated

intensive research, was solved in [13]. Secondly,

quite recently a far-going generalisation of the

problem for arbitrary 1-Lipschitz transformations

of 2-adic spheres was also solved in [16]. Finally,

we note that not only polynomial and rational

p-adic dynamical systems has been studied: In

past decade, a significant progress was achieved

in a study of a very general p-adic dynamical

systems like non-expansive, locally analytic, shift-

like, etc.

It is also known [33, 41, 43, 56] that a num-

ber of p-adic models in physics cannot be de-

scribed using ordinary Kolmogorov’s probabil-

ity theory. In [34] an abstract p-adic probability

theory was developed by means of the theory

of non-Archimedean measures. Applications of

the non-Kolmogorov theory of probability can

be considered not only in physics, but in many

other sciences, especially in biology and possibly

in sociology. The general principle of statistical

stabilisation of relative frequencies is a new pos-

sibility to find a statistical information in the

chaotic (from the real point of view) sequences

of frequencies [31, 1, 2].

We refer the reader to [30, 24, 44–46] where

various models of statistical physics in the context

of p-adic fields are studied.

A non-Archimedean analogue of the Kol-

mogorov theorem was proved in [25]. Such

a result allows to construct wide classes of

stochastic processes and the possibility to de-

velop statistical mechanics in the context of p-adic

theory.
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