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Discrepancy, Graphs, and the
Kadison–Singer Problem

N Srivastava

Discrepancy theory seeks to understand how well

a continuous object can be approximated by a

discrete one, with respect to some measure of

uniformity. For instance, a celebrated result due to

Spencer says that given any set family S1, . . . , Sn ⊂
[n], it is possible to colour the elements of [n] Red

and Blue in a manner that:

∀Si ||Si ∩ R| − |Si|
2
| ≤ 3

√
n,

where R ⊂ [n] denotes the set of red elements.

In other words, it is possible to partition [n] into

two subsets so that this partition is very close

to balanced on each one of the test sets Si. Note

that a “continuous” partition which splits each

element exactly in half will be exactly balanced

on each Si; the content of Spencer’s theorem is

that we can get very close to this ideal situation

with an actual, discrete partition which respects

the wholeness of each element.

Spencer’s theorem and its variants have had

applications in approximation algorithms, numer-

ical integration, and many other areas. In this

post I will describe a new discrepancy theorem [1]

due to Adam Marcus, Dan Spielman, and myself,

which also seems to have many applications. The

theorem is about “uniformly” partitioning sets of

vectors in Rn and says the following:

Theorem 1. (implied by Corollary 1.3 in [1])

Given vectors v1, . . . , vm ∈ Rn satisfying �vi�2 ≤ α and

m
∑

i=1

�vi, x�2 = 1 ∀�x� = 1, (1)

there exists a partition T1 ∪ T2 = [m] satisfying
∣

∣

∣

∣

∣
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∣

∣

∑

i∈Tj

�vi, x�2 − 1
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∣

∣
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∣

∣

≤ 5
√
α ∀�x� = 1.

Thus, instead of being nearly balanced with re-

spect to a finite set family as in Spencer’s setting,

we require our partition of v1, . . . , vm to be nearly

balanced with respect to the infinite set of test

vectors �x� = 1. In this context, “nearly balanced”

means that about half of the quadratic form

(“energy”) of the v1, . . . , vm in direction x comes

from T1 (and the rest, which must also be about

half, comes from T2). We will henceforth refer

to the maximum deviation from perfect balance

(i.e. 1/2) over all x as the discrepancy of a partition.

Note that every partition has discrepancy at most

1/2, so the guarantee of the theorem is nontrivial

whenever 5
√
α < 1/2.

This type of theorem was conjectured to hold

by Nik Weaver [2], with any constant strictly less

than 1/2 (independent of m and n) in place of

5
√
α. The reason he was interested in it is that

he showed it implies a positive solution to the

so-called Kadison–Singer (KS) problem, a central

question in operator theory which had been open

since 1959. KS was itself motivated by a basic

question about the mathematical foundations of

quantum mechanics — check out the blog soul-

physics [3] for an intuitive description of its

physical significance. If you want to know exactly

what the statement of KS is and how it can be

reduced to finite-dimensional vector discrepancy

statements similar to Theorem 1, I highly rec-

ommend the accessible and self-contained survey

article written recently by Nick Harvey [4].

In the rest of the post I will try to demystify

what Theorem 1 is about, say a bit about the

proof, and describe a simple application to graph

theory.

1. What the Theorem Says

Let’s examine how restrictive the hypotheses of

Theorem 1 are. To see that some bound on the

norms of the vi is necessary for the conclusion of

the theorem to hold, consider an example where

one vector has large norm, say �v1�2 = 3/4. In any

partition of v1, . . . , vm, one of the sets, say T1, will

contain v1. If we now examine the quadratic form

in the direction x = v1/�v1�, we see that
∑

i∈T1

�vi, x�2 ≥ �v1�2 = 3/4,

so this partition has discrepancy at least 1/4.

The problem is that v1 by itself accounts for
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significantly more than half of the quadratic form

in direction x, and there is no way to get closer

to half without splitting the vector.

Another instructive example is the one-

dimensional instance v1, . . . , vm ∈ R1, with v2
i
=

1/m = α for all i and m odd. Here, the larger

side of any partition must have
�

i∈Tj
�vi, e1�2 =

�

i∈Tj
v2

i
≥ 1/2 + α/2, leading to a discrepancy of

at least α/2.

In general, the above examples show that the

presence of large vectors is an obstruction to the

existence of a low discrepancy partition. Theorem

1 shows that this is the only obstruction, and

if all the vectors have sufficiently small norm

then an appropriately low discrepancy partition

must exist. It is worth mentioning that by a

more sophisticated example than the ones above,

Weaver has shown that the O(
√
α) dependence in

Theorem 1 cannot be improved.

Let us now consider the “isotropy” condition

(1). This may seem like a very strong requirement

at first, but it is in fact best viewed as a normali-

sation condition. To see why, let us first write the

theorem using matrix notation. It says that given

vectors v1, . . . , vm ∈ Rn with �vi�2 ≤ α and

m
�

i=1

viv
T
i = I,

there is a partition T1 ∪ T2 = [m] satisfying
�

1

2
− 5
√
α

�

I �
�

i∈Tj

viv
T
i �
�

1

2
+ 5
√
α

�

I,

where A � B means that

xTAx ≤ xTBx ∀x ∈ Rn,

or equivalently that B−A is positive semidefinite.

Now suppose I am given some arbitrary vec-

tors w1, . . . , wm ∈ Rn, which are not necessar-

ily isotropic. Assume that the span of the wi

is Rn (otherwise, change the basis and write

them as vectors in some lower-dimensional Rk).

This implies that the positive semidefinite matrix

W :=
�m

i=1 wiw
T
i

is invertible, and therefore has

a negative square root W−1/2. Now consider the

“normalised” vectors

vi =W−1/2wi, i = 1, . . . , m

and observe that

m
�

i=1

viv
T
i =W−1/2


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
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
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wiw
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i

















W−1/2
= I,

so these vectors are isotropic. The normalised

vectors have norms

�vi�2 = �W−1/2wi�2.

To better grasp what these norms mean, we can

write:

�W−1/2wi�2 = sup
x�0

�x, W−1/2wi�2

xTx
( ∗ )

= sup
y=W1/2x�0

�W1/2y, W−1/2wi�2

yTWy

= sup
y�0

�y, wi�2
�

i�y, wi�2
.

Thus, the norms �vi�2 measure the maximum frac-

tion of the quadratic form of W that a single vector

wi can be responsible for — exactly the critical

quantity in the example at the beginning of this

section.

These numbers are sometimes called “leverage

scores” in numerical linear algebra and statistics.

As long as the leverage scores are bounded by α,

we can apply Theorem 1 to v1, . . . , vm to obtain a

partition satisfying

�
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2
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√
α

�

I �
�
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T
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�
�

1

2
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√
α

�

I.

We now appeal to the fact that A � B iff MAM �
MBM, for any invertible M (this amounts to a

simple change of variables similar to what we did

in (*)). Multiplying by W1/2 on both sides, we find

that the partition T1 ∪ T2 guaranteed by Theorem

1 satisfies:

�

1

2
− 5
√
α

�
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











m
�
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wiw
T
i

















�
�

i∈Tj

wiw
T
i

�
�

1

2
+ 5
√
α

�

















m
�

i=1

wiw
T
i

















. (2)

Thus, we have the following restatement of

Theorem 1:

Theorem 2. Given any vectors w1, . . . , wm ∈ Rn, there

is a partition T1 ∪ T2 = [m] such that (2) holds with

α = maxi wT
i
(
�m

i=1 wiw
T
i
)+wi.

Note that we have used the pseudoinverse

instead of the usual inverse to handle the case

where the vectors do not span Rn.
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For those who do not like to think about sums

of rank one matrices (I know you’re out there),

Theorem 2 may be restated very concretely as:

Theorem 3. Any matrix Bm×n whose rows wT
i

have

leverage scores wT
i
(BTB)+wi bounded by α can be

partitioned into two row submatrices B1 and B2 so

that for all x ∈ Rn:

(1/2 − 5
√
α)�Bx�2 ≤ �Bjx�2 ≤ (1/2 + 5

√
α)�Bx�2.

The reason this theorem is powerful is that lots

of diverse objects can be encoded as quadratic

forms of matrices. We will see one such applica-

tion later in the post.

2. Matrix Chernoff Bounds and

Interlacing Polynomials

Let me quickly say a bit about the proof of

Theorem 1. One reasonable way to try to find a

good partition T1 ∪ T2 is randomly, and indeed

this strategy is successful to a certain extent. The

tool that we use to analyse a random partition

is the so-called “Matrix Chernoff Bound”, de-

veloped and refined by Lust-Piquard, Rudelson,

Ahlswede-Winter, Tropp, and others. The variant

that is most convenient for our application is the

following:

Theorem 4. (Theorem 4.1 in [5])

Given symmetric matrices A1 . . . , Am ∈ Rn×n and

independent random Bernoulli signs ǫ1, . . . , ǫm, we

have

P

















�

�

�

�

�

�

�

m
�
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ǫiAi

�

�

�

�

�

�

�

≥ t

















≤ 2n · exp















− t2

2�
�m

i=1 A2
i
�















.

Applying the theorem to Ai = viv
T
i

and taking

T1 = {i : ǫi = +1} yields Theorem 1 with a

discrepancy of O(
�

α log n), which is nontrivial

when α ≤ O(1/ log n). This bound is interesting

and useful in some settings, but it is not sufficient

to prove the Kadison–Singer conjecture (which

requires a uniform bound as n → ∞), or for the

application in the next section. It may be seen

as analogous to the discrepancy of O(
�

n log n)

achieved by a random colouring of a set family

S1, . . . , Sn ⊂ [n], which is easily analysed using the

usual Chernoff bound and a union bound.

In order to remove the logarithmic factor

and obtain Theorem 1, we prove the following

stronger but less general inequality, which con-

trols the deviation of a sum of independent rank-

one matrices at a constant rather than logarithmic

scale, but only with nonzero (rather than high)

probability:

Theorem 5. (Theorem 1.2 in [1])

If ǫ > 0 and v1, . . . , vm are independent random vectors

in Rn with finite support such that

m
�

i=1

Eviv
T
i = I,

and

E�vi�2 ≤ α

for all i, then

P

















�

�

�

�

�

�

�

m
�

i=1

viv
T
i

�

�

�

�

�

�

�

≤ (1 +
√
α)2

















> 0.

The conclusion of the theorem is equivalent to

the following existence statement: there is a point

ω ∈ Ω in the probability space implicitly defined

by the vis such that
�

�

�

�

�

�

�

�

i≤m

vi(ω)vi(ω)T

�

�

�

�

�

�

�

≤ (1 +
√
α)2.

To prove the theorem, we begin by considering

for every ω the univariate polynomial

P[ω](x) := det

















xI −
�

i≤m

vi(ω)vi(ω)T

















.

The roots of P[ω] are real since it is the charac-

teristic polynomial of a symmetric matrix, and in

particular the largest root is equal to the spectral

norm of
�

i≤m vi(ω)vi(ω)T.

The proof now proceeds in two steps. First, we

show that there must exist an ω such that

λmax(P[ω]) ≤ λmax(EP), (3)

where λmax denotes the largest root of a poly-

nomial. This type of statement may be seen as

a generalisation of the probabilistic method to

polynomial-valued random variables, and was

introduced in the paper [6], where we used it to

show the existence of bipartite Ramanujan graphs

of every degree. Note that (3) does not hold for

general polynomial-valued random variables —

in general, the roots of a sum of polynomials

do not have much to do with the roots of the

individual polynomials. The reason it holds in this

particular case is that the P[ω] are generated by

sums of rank-one matrices (which by Cauchy’s

theorem produce interlacing characteristic poly-

nomials) and form what we call an “interlacing

family”.
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The second step is to upper bound the roots

of the expected polynomial µ(x) := EP(x). It turns

out that the right way to do this is to write µ(x)

as a linear transformation of a certain m-variate

polynomial Q(z1, . . . , zm), and show that Q does

not have any roots in a certain region of Rm.

This is achieved by a new multivariate general-

isation of the “barrier function” argument used

in [7] to construct spectral sparsifiers of graphs.

The multivariate barrier argument relies heavily

on the theory of real stable polynomials, which

are a multivariate generalisation of real-rooted

polynomials.

Rather than giving any further details, I en-

courage you to read the paper. The proof is not

difficult to follow, and from what I have heard

quite “readable”.

3. Partitioning a Graph into Sparsifiers

One very fruitful setting in which to apply The-

orem 2 is that of Laplacian matrices of graphs.

Recall that for an undirected graph G = (V, E) on

n vertices, the Laplacian is the n × n symmetric

matrix defined by:

LG =

∑

ij∈E
bijb

T
ij ,

where bij := (ei − ej) is the incidence vector of the

edge ij. The Laplacian quadratic form

xTLGx =
∑

ij∈E
(x(i) − x(j))2

encodes a lot of useful information about a graph.

For instance, it is easy to check that given any cut

S ⊂ V, the quadratic form xT
S
LGxS of the indicator

vector xS(i) = 1{i∈S} is equal to the number of

edges between S and S. Thus, the values of xTLGx

completely determine the cut structure of G. (We

mention in passing that the extremisers of the

quadratic form are eigenvalues and are related to

various other properties of G — this is the subject

of spectral graph theory.)

Now consider G = Kn, the complete graph on

n vertices, which has Laplacian

LKn
=

∑

ij

bijb
T
ij .

An elementary calculation reveals that the lever-

age scores in this graph are all very small:

bT
ij L
+

Kn
bij =

2

n
.

This is a good time to mention that the leverage

scores of the incidence vectors bij in any graph G

have a natural interpretation — they are simply

the effective resistances of the edges ij when the

graph is viewed as an electrical network (this

happens because inverting LG is equivalent to

computing an electrical flow, and the quantity

xTL+
G

x is equal to the energy dissipated by the

flow.) In any case, for the complete graph, all of

the edges have effective resistances equal to 2/n,

so we may apply Theorem 2 with α = 2/n to

conclude that there is a partition of the edges into

two sets, T1 and T2, each satisfying

(

1/2 −O(1/
√

n)
)

LKn
�
∑

ij∈Tk

bijb
T
ij

�
(

1/2 +O(1/
√

n)
)

LKn
. (4)

Now observe that each sum over Tk is the Lapla-

cian LGk
of a subgraph Gk of Kn. By recalling the

connection to cuts, this implies that Kn can be par-

titioned into two subgraphs, G1 and G2, each of

which approximates its cuts up to a 1/2±O(1/
√

n)

factor.

This seems like a cute result, but we can go a

lot further. As long as the effective resistances of

edges in G1 and G2 are sufficiently small, we can

apply Theorem 2 again to each of them to obtain

four subgraphs. And then again to obtain eight

subgraphs, and so on.

How long can we keep doing this? The an-

swer depends on how fast the effective resistances

grow as we keep partitioning the graph. The fol-

lowing simple calculation reveals that they grow

geometrically at a favourable rate. Initially, all of

the effective resistances are equal to ℓ0 = 2/n. After

one partition, the maximum effective resistance of

an edge in Gk is at most

ℓ1 := max
ij∈Gk

bT
ij L
+

Gk
bij ≤ (1/2 −O(1/

√
n))−1bijL

+

Kn
bij

= (1/2 −O(1/
√

n))−1 · (2/n).

In general, after i levels of partitioning, we have

the inequalities:

2 exp (O(
√

ℓi−1))ℓi−1 ≥ (1/2 −O(
√

ℓi−1))−1ℓi−1

≥ ℓi
≥ (1/2 +O(

√

ℓi−1))−1ℓi−1

≥ (3/2)ℓi−1,

as long as ℓi−1 is bounded by some sufficiently

small absolute constant δ. Applying these inequal-
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ities iteratively we find that after t levels:

ℓt ≤ 2t exp

















O

















t−1
�

i=0

�

ℓi

































ℓ0

≤ 2t · exp

















O

















t−1
�

i=0

�

(2/3)t−1−iℓt−1

































· (2/n)

≤ exp (O(
√
δ)) · 2t(2/n),

and the inequalities are valid as long as we main-

tain that ℓt−1 ≤ δ. Taking binary logs, we find that

these conditions are satisfied as long as

O(
√
δ) + t + log (2/n) ≤ log (δ),

which means we can continue the recursion for

t = log n − 1 + log (δ) −O(
√
δ) = log n −O(1)

levels. This yields a partition of Kn into O(n) sub-

graphs, each of which is an O(1)-factor spectral

approximation of (1/2t)Kn, in the sense of (4). This

latter approximation property implies that each

of the graphs must have constant degree (by con-

sidering that the degree cuts must approximate

those of (1/2t)Kn) and constant spectral gap; thus

we have shown that Kn can be partitioned into

O(n) constant degree expander graphs.

The real punchline, however, is that we did

not use anything special about the structure of

Kn other than the fact that its effective resistances

are bounded by O(1/n). In fact, the above proof

works exactly the same way on any graph on n

vertices with m edges, whose effective resistances

are bounded by O(n/m) — for such a graph, the

same calculations reveal that we can recursively

partition the graph for log (m/n) − O(1) levels,

while maintaining a constant factor approxima-

tion! Note that the total effective resistance of any

unweighted graph on n vertices is n − 1, so the

boundedness condition is just saying that every

effective resistance is at most a constant times the

average over all m edges.

For instance, the effective resistances of all

edges in the hypercube Qn on N = 2n vertices

are very close to 1/2n = 1/2 log N. Thus, repeat-

edly applying Theorem 2 implies that it can be

partitioned into O( log N) constant degree sub-

graphs, each of which is an O(1)-factor spectral

approximation of 1/ log N · Qn. In fact, this type

of conclusion holds for any edge-transitive graph,

in which symmetry implies that each edge has

exactly the same effective resistance.

The above result may be seen as a gener-

alisation of the theorem of Frieze and Molloy

[9], which says that up to a certain extent, any

sufficiently good expander graph may be parti-

tioned into sparser expander graphs. It may also

be seen as an unweighted version of the spectral

sparsification theorem of Batson, Spielman, and

myself [7], which says that every graph has a

weighted O(1)-factor spectral approximation with

O(n) edges. The recursive partitioning argument

that we have used is quite natural and appears to

have been observed a number of times in various

contexts; see for instance paper of Rudelson [10],

as well as the very recent work of Harvey and

Olver [11].

4. Conclusion and Open Questions

Theorem 1 essentially shows that under the

mildest possible conditions, a quadratic form/

sum of outer products can be “split in two” while

preserving its spectral properties. Since graphs

can be encoded as quadratic forms/outer prod-

ucts, the theorem implies that they also can be

“split into two” while preserving some proper-

ties. However, a lot of other objects can also be

encoded this way. For instance, applying The-

orem 1 to a submatrix of a Discrete Fourier

Transform (it also holds over Cn) or Hadamard

matrix yields a strengthening of the “uncertainty

principle” for Fourier matrices, which says that a

signal cannot be localised both in the time domain

and the frequency domain; see paper of Casazza

and Weber [12] for details. This strengthening

has implications in signal processing, and its

infinite-dimensional analogue is useful in analytic

number theory. For a thorough survey of the

consequences of the Kadison–Singer conjecture

and Theorem 1 in many diverse areas, check

out [13].

To conclude, let me point out that the cur-

rent proof of Theorem 1 is not algorithmic, since

it involves reasoning about polynomials which

are in general #P-hard to compute. Finding a

polynomial-time algorithm which delivers the

low-discrepancy partition promised by the theo-

rem is likely to yield further insights into the tech-

niques used to prove it as well as more connec-

tions to other areas — just as the beautiful work of

Moser-Tardos [14], Bansal [15], and Lovett-Meka

[16] has done for the Lovasz Local Lemma and

Spencer’s theorem. It would also be nice to see

if the methods used here can also be used to
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recover known results in discrepancy theory, such

as Spencer’s theorem itself.
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