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In the broadest sense, a random matrix is merely

a matrix with random numbers in it. In practice

these matrices often have some symmetry or uni-

tarity conditions, and the entries are frequently

drawn from a Gaussian distribution. We call the

set of matrices having such-and-such definition an

ensemble. The main focus of the field of random

matrix theory is to analyse the eigenvalue distri-

bution of the ensemble, although the behaviour

of the eigenvectors may also be of interest. It

may be expected a priori that the eigenvalues of

a random matrix are scattered uniformly at ran-

dom over their support (exhibiting the “clumpy”

patterns typical of such data), however this is

far from true and they instead display strongly

correlated behaviour. The most striking instance

of this arises from the ubiquitous appearance of

the product
∏

j<k |λk − λj|
β in the eigenvalue joint

probability density function ( jpdf ), which is the

required Jacobian when changing variables from

the matrix entries to the matrix eigenvalues. (We

will discuss the β parameter below.) Since this

product implies that there is a low probability

of finding two eigenvalues close to each other,

the product is interpreted as eigenvalue repulsion.

This repulsion is found in both Hermitian and

non-Hermitian matrix ensembles. Another effect

of the Vandermonde product is that, by Vander-

monde’s well-known identity, the eigenvalue jpdf

can be rewritten as a determinant. This latter fact

is key to the analysis, allowing the powerful tools

of linear algebra to be brought to bear on the

problem.

Random Hermitian Gaussian matrices found

some early applications in physics, largely due to

the work of Eugene Wigner. The problem being

faced at the time was the analysis of the highly

excited states of heavy nuclei. Modelling the
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problem as a set of interacting particles quickly

leads to a set of unwieldy coupled equations.

Rather, Wigner [10] suggested that a statistical

approach might be more useful, and he conjec-

tured that the distribution of the spacing between

energy levels will be well approximated by the

eigenvalue spacing distribution of large, real sym-

metric, Gaussian matrices (this statement became

known as the Wigner surmise); this expectation

was also proposed by Landau and Smorodinsky

[7, Lecture 7]. A few years later, it was compre-

hensively demonstrated that the repulsive nature

of the energy levels could indeed be modelled by

eigenvalues of symmetric matrices, and that the

results matched Wigner’s predictions. Building on

this work, Dyson [2] found that these random

matrices naturally fell into three classes: real sym-

metric, complex Hermitian and real quaternion

self-dual; a result which is fundamentally due

to a theorem of Frobenius that there are exactly

three associative division algebras over the reals.

It turns out that the parameter β in the Vander-

monde product above corresponds to the number

of independent real components in these matrix

entries: β = 1 for real ensembles, β = 2 for

complexes and β = 4 for real quaternions. These

values for β have become known as the Dyson

indices. The ensembles corresponding to these val-

ues of β are called the Gaussian orthogonal (GOE),

unitary (GUE) and symplectic (GSE) ensembles

respectively, due to the invariance properties of

their density functions.

Analogous ensembles (which have come to

be known as Ginibre ensembles) of non-symmetric

real, non-Hermitian complex and non-self-dual

real quaternion matrices (with Gaussian entries)

were introduced in [4], with matching Dyson

indices. However, the lack of unitary diagonal-

isability caused significant complications for the

real case, meaning that analytical progress was

delayed until the early 1990s. For these non-

Hermitian matrices, it is now standard practice to

sacrifice orthogonal/unitary diagonalisability for
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Fig. 1. From left to right we have eigenvalue plots for 120 independent 100 × 100 Ginibre matrices for β = 1 (real), 2 (complex), 4 (real
quaternion).
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Fig. 2. From left to right we have stereographic eigenvalue plots for 120 independent 100 × 100 spherical matrices for β = 1 (real),
2 (complex), 4 (real quaternion).

orthogonal/unitary triangulisability by using the

Schur decomposition. Whereas the eigenvalues of

Hermitian matrices are all real, the eigenvalues of

non-Hermitian matrices are (in general) complex:

N×N complex matrices have N independent com-

plex eigenvalues; 2N×2N real quaternion matrices

have N complex-conjugate pairs of eigenvalues;

and N × N real matrices have k real eigenvalues

and (N − k)/2 complex-conjugate pairs. Further,

given the eigenvalue repulsion implied by the

Vandermonde product, we note that the complex-

conjugate pairs in the real and real quaternion

ensembles result in an effective repulsion of eigen-

values from the real axis (except for the strictly real

eigenvalues in the real ensembles). This is demon-

strated in the simulations of Fig. 1. Note that

(except for near the real line) the eigenvalues are

roughly uniformly distributed on a disk, which,

before scaling is of radius proportional to
√

N.

This is a consequence of a universality result —

called the circular law — which says that in the

limit of large matrix dimension the eigenvalue

density, suitably scaled, of any matrix with inde-

pendently and identically distributed (iid) entries

(assuming finite mean and unit variance) is uni-

form on the unit disk [9]. The analogous result for

Hermitian ensembles is the semi-circular law: that

the (scaled) eigenvalue density is a semi-circle of

unit radius [1].

If we now take two matrices A, B from the same

Ginibre ensemble and form the product Y = A−1B,

then we have formed a so-called spherical ensem-

ble.a To see the origin of the name, we stereo-

graphically project the eigenvalues of simulations

of real, complex and real quaternion spherical

ensembles in Fig. 2. The complex ensemble yields

eigenvalues that are uniformly distributed over

the sphere; the real ensemble has a clear ring of

eigenvalues on a great circle corresponding to the

real line; and the eigenvalue density for the real

quaternion ensemble splits into two disjoint hemi-

spheres along the same great circle corresponding

to the real line. We say that these matrices are

in the spherical universality class because of the

spherical law, which is analogous to the circular

and semi-circular laws discussed above. It states

that for two matrices with iid entries, having

mean zero and finite variance (in other words,

obeying the circular law), then in the limit of large

matrix dimension the eigenvalues of the product

Y = A−1B are uniformly distributed on the sphere

(after stereographic projection).

The eigenvalue correlation functions for the

complex ( β = 2) case were studied in [6] and the

real ( β = 1) case in [3]. The work done during

aThe eigenvalues of Y = A−1B are equivalent to the generalised
eigenvalues of A and B, which are solutions to det(B − λA) = 0.
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this Fellowship, and contained in [8], was on the

calculation of the correlation functions for the en-

semble corresponding to the last of the Dyson in-

dices, real quaternion ( β = 4). The procedure first

involves changing variables from the elements of

A and B (each an N × N matrix with Gaussian

real quaternion entries) to the elements of Y =

A−1B, which entails integrating out 4N2 degrees

of freedom; then further changing variables to the

eigenvalues of Y, integrating out another 4N(N−1)

variables, leaving just the 2N complex eigenval-

ues. Next, a Pfaffianb form of the ensemble av-

erage is written down and we find polynomials

(called skew-orthogonal polynomials) that will skew-

diagonalise the matrix in the Pfaffian. Armed with

these polynomials we are then able to obtain

the eigenvalue correlation functions by functional

differentiation of the ensemble average. Lastly, we

take various limits to find that the eigenvalues are

indeed uniformly distributed over the sphere for

large N (a consequence of the spherical law), and

further, that by zooming in on the sphere near

the great circle corresponding to the real line, we

recover the same correlation functions as in the

real Ginibre ensemble [5].
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bFor an even dimensional matrix X, which is skew-Hermitian
(X† = −X), Pf(X) =

√
det X.
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