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In 1970, Gian-Carlo Rota posed a beautiful con-

jecture that provides a combinatorial characteri-

sation of linear dependence in vector spaces over

any given finite field. Recently Jim Geelen, Bert

Gerards and I completed a 15-year project that

culminated in a proof of Rota’s conjecture. What

follows is an attempt to give some insight, in lan-

guage suited to a general mathematical audience,

to Rota’s conjecture itself together with a short

discussion of the techniques that lead to its proof.

Collinearity, coplanarity and their higher di-

mensional analogues can be thought of as describ-

ing the combinatorial properties of a set of points in

space. These properties can be captured, through

the use of homogeneous coordinates, by linear

independence. Thus, given a finite set E of vectors,

the combinatorial properties of the vectors in E

are captured by knowing those subsets of E that

are linearly independent. The properties that we

capture in that way are, of course, the properties

of interest in classical projective geometry.

In 1935 Hassler Whitney attempted to capture

this axiomatically. We are given a set E and a

collection of subsets I of E that we call indepen-

dent. We will say that the pair (E,I) is representable

over a field F or F-representable if we can find a

bijection from E to a collection of vectors in a

vector space V over F such that the independent

sets are precisely the sets that are mapped to

linearly independent subsets of V. The pair (E,I)

is representable if there exists a field over which

it is representable. Whitney observed that the

following three conditions are necessary for (E,I)

to be representable.

1. The empty set is independent.

2. Subsets of independent sets are indepen-

dent.

3. If I and J are independent and |J| > |I|, then

there is an element x ∈ J − I such that I ∪ {x}

is independent.

If the above properties are satisfied, then we

say that (E,I) is a matroid. While the three condi-

tions above are necessary for representability, they

are by no means sufficient. It is easy to construct

matroids that are not representable and Whitney

posed the problem of characterising the matroids

representable over a given field.

For infinite fields the evidence seems to sug-

gest that there is no nice answer to Whitney’s

problem. For this reason, most attention in ma-

troid theory has focused on finite fields. Whitney

himself characterised the matroids representable

over the two-element field, although a much nicer

characterisation was found by Bill Tutte in 1958.

Consider an example. Let E be a 4-element set

and let I be all subsets of E with at most two

elements. Geometrically the matroid (E,I) repre-

sents the 4-point line. This matroid is traditionally

denoted U2,4. The matroid U2,4 is representable

over any field except GF(2). This is because lines

in binary space have only three points.

With typical prescience, Bill Tutte proved that

U2,4 played a fundamental role in the class of

binary matroids. To understand that role we need

to introduce our concept of substructure and dis-

cuss “minors”. If e is an element of the matroid

M we can delete e to obtain a matroid whose

independent sets are the independent subsets of

M contained in E − {e}. Eliding a nuance we can

contract e to obtain a matroid whose independent

sets are the subsets A of E−{e} having the property

that A ∪ {e} is independent in M. Geometrically

contraction corresponds to projecting the points of

E−{e} from the point e onto a hyperplane. Any ma-

troid obtained from M by a sequence of deletions

and contractions is a minor of M. Space forbids

me to put forward the reasons here; but minors

really are the natural notion of substructure for

matroids.

A class M of matroids is minor closed if every

minor of a member of M is also in M. The

matroid M is an excluded minor for the minor-

closed classM if M �M, but all proper minors of

M are in M. A minor-closed class of matroids is

characterised by its set of excluded minors, but, in

general, there may be infinitely many of them. For

example, if F is an infinite field, then the class of

F-representable matroids has an infinite number

of excluded minors. In striking contrast to this,

Tutte proved the following theorem.

Theorem 1. A matroid M is GF(2)-representable if

and only if it does not have U2,4 as a minor.

In other words, U2,4 is the unique excluded

minor for representability over GF(2). Note that
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Tutte’s theorem resolves Whitney’s problem for

the class of binary matroids. In 1970 Gian-Carlo

Rota conjectured that a similar result held for all

finite fields.

Conjecture 2 (Rota’s conjecture). Let F be a finite

field. Then there are only finitely many excluded mi-

nors for the class of F-representable matroids.

In 1979 Bixby and Seymour independently

proved Rota’s conjecture for GF(3) showing that

there were four excluded minors for the class of

GF(3)-representable matroids. Some twenty years

later, Geelen, Gerards and Kapoor proved that

there were seven excluded minors for repre-

sentability over GF(4). They received the Fulker-

son Prize for this work. Jim Geelen reported to

me that when he discussed his proof of Rota’s

conjecture for GF(4) with Bill Tutte, the reply

was simply “ah the next case”. Deflated though

he was at the time, Jim understood that Tutte

was, in his inimitable way, pointing out that the

constructive techniques that were used in these

early cases would not suffice for a resolution of

Rota’s conjecture in general.

A completely different form of attack was

needed. Inspiration came from an Oberwolfach

workshop where Paul Seymour described an at-

tempt to generalise some of the results of the

Graph Minors Project to binary matroids. Readers

familiar with graph minors will already have

noticed parallels with Rota’s conjecture. Indeed

many readers will be familiar with Kuratowski’s

Theorem which says that the K5 and K3,3 are

the only excluded minors for the class of planar

graphs. Neil Robertson and Paul Seymour proved

that this result is typical. As the culmination of a

long series of papers they prove that graphs are

well-quasi-ordered under the minor order. Stated

in a form suited to this discussion their theorem

says the following.

Theorem 3 (Graph WQO Theorem). Every minor-

closed class of graphs has a finite number of excluded

minors.

That sounds a lot like Rota’s conjecture. Asso-

ciated with a graph is a matroid whose elements

are the edges of the graph. This matroid is F-

representable for any field F. Moreover, minors

of graphs and their associated matroids corre-

spond. Robertson and Seymour were aware that

the Graph WQO Theorem was likely to be a

special case of a more general result for matroids

representable over finite fields. After much pain,

Jim, Bert and I eventually proved this more gen-

eral result.

Theorem 4 (Matroid WQO Theorem). Let F

be a finite field. Then every minor-closed class of

F-representable matroids has a finite number of F-

representable excluded minors.

It should be noted that both of the well-

quasi-ordering theorems follow — with work —

from theorems that give the qualitative structure

of members of proper minor-closed classes of

graphs or matroids. These theorems are the true

workhorses of the projects.

Are we there yet? Definitely not. The Matroid

WQO Theorem is about F-representable excluded

minors and Rota’s conjecture says something

quite different. But we have powerful tools and

techniques and are well on the way. Space forbids

a discussion of the other ingredients necessary to

arrive at the final destination of a proof of Rota’s

conjecture.

Finally I note that it will be some time before

a proof of Rota’s conjecture appears. The task

of writing up our results is lengthy, will require

numerous papers, and will take several years.
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