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Abstract. Emmy Noether, being a mathematician,
proved an exceptional result in Physics, which goes by
the name of Noether’s theorem. Starting with the phi-
losophy of science, I try to discuss the theorem and its
background. Invoking a pragmatic view of the same, I
conclude it from a philosophical footing, which unveils
its inner beauty. Though the philosophical implications
of Noether’s theorem have been studied, this article
offers more refined version of it.
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1. Introduction

Though Omar Khayyám in his magnum opus

Rubáiyát [1], expresses the limitation of human-

istic inquiry as

Then to the rolling Heaven itself I cried,
Asking, “What Lamp had Destiny to guide
Her little Children stumbling in the Dark?”

And “A blind understanding!” Heaven replied.

However, rationality ingrained in human

brain, took it with a pinch of salt. Going further

in reducing the multifaceted edifice of reality,

axiomatically, humans tried to disseminate the

palatable chunks of acquired information through

a language, whose semantics/syntax are con-

structed upon inter-subjective agreements. Ques-

tions that pertain to the very existence of objec-

tive reality are abstruse, and hence are pushed

under the carpet of philosophy. Discussion about

reality (satyáa), for instance in Eastern philosophy,

dates back at-least to Vedic age. The very task of

reaching out to objective reality, with our senses

(which are subjective), turns out to be futile. In

Western Philosophy, Rene Descartes presented the

same argument in a concrete way, which goes

under the name of Cartesian Skepticism [4], where

he concludes the impossibility of forming an ob-

jective basis of reality, arguing how our sense

aAs per Hermann Graβmann’s Wörterbuch zum Rig-Veda [18]
means “Speaking about that, which truly coincides with the
real fact, and which is unchangeable” (Wahr von der rede, die
mit der wirklichen tatsache übereinstimmt....).

perceptions qua experiences of the outer world,

can be cheated by a “demon”. Later on Plato

through allegory of cave (Republic [5]), metapho-

rised the same, comparing ourselves to prisoners

in a cave, whose inferences are based upon the

conditioned (subjective) knowledge gained from

the past. Such prisoners, who never stepped out

of the cave, are in a delusion, inferring that the

objects in the external world look exactly like

their shadows formed on the wall of the prison,

which de facto can be distorted versions of reality

(out-there). One can go further generalising it,

as if we are present in a set of infinitely em-

bedded caves, and we may be seeing the reality

in an infinitely distorted way. There is no way

of knowing/authentically verifying it, unless we

reach out to it. On the other hand one can con-

clude that the objective truths, formulated so far,

strictly speaking are subjectively objective. We all

agree upon a collective common set of axioms,

and subjected to certain sense perceptions and

inferences we arrive at a particular consistency

(truth) which to strictly speaking is subjective, but

can be relatively objective. This notion is essential

to further our understanding.

Epistemology deals with the nature of knowl-

edge obtained, from our cognitive and sense per-

cepts (how the system appears to us), where

as ontology is the study of the system as it

is, independent of our perceptions, inferences,

heuristics and empiricism. Epistemological cate-

gorisation adhering to a phenomenological basis,

thereafter engendered various disciplines within

science, mathematics being a cornerstone hitherto.

Applying a set of tools of one discipline, to an-

other discipline, gave rise to many more fields,

for instance quantum biology or mathematical

physics, etc., Praxis of physics adheres to experi-

mental philosophy. Empirical data (outcomes of

Spatiotemporal measurements) having an epis-

temological basis, is used to fabricate mathe-

matical formalism, thereby obtaining a formula,

which can predict outcomes of the experiment.
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Experimental predictions account to beliefs,

where as experimental outcomes represent (ob-

servable) reality. For a theory to be successful, it

should on one hand maintain harmony between

belief systems and reality, and on the other hand

should be consistentb with well established in-

ferences. Updations in belief systems are done

(by adding fudge factors into mathematical for-

mula), to account for counterintuitive experimen-

tal results. Starting with an epistemological basis

(context dependent and empirical) upon which a

theory is constructed, it is hard to think about the

extent to which it entails the underlying ontology

of the system, as ontology surpasses empiricism,

and it concerns with the intrinsic properties of the

system. Though epistemologically obtained ob-

servable properties about an object give us some

information about it, we cannot for sure infer that

those properties are innate properties of the object

itself. For instance, Redness of an apple, may not

be the real ontological (objective) property of ap-

ple, but is just the epistemic state, corresponding

to our sense of vision, which gets excited by the

light that is reflected from apple. So redness of

apple is an epiphenomenon of apple interacting

with vision field. So in realism, by assuming that,

what we see is really out there, one can keep such

questions on hold. Many physicists are realists. To

sum up, reality out there is perceptionally rich,

semantically neutral, until epistemically viewed,

and underlying ontological implications are sub-

jected to skepticism. So Noether’s theorem plays

an important role in connecting the epistemic and

ontic descriptions, and we will see it soon. At

this point I would like to say a few words about

Noether.

Emmy Noether was a German mathematician,

who is best known for her groundbreaking con-

tributions in the fields of mathematics and theo-

retical physics. Despite all the difficulties she en-

countered because of her gender, she has proved

some of the most beautiful results which will

stand forever. People in those days, subscribed

to this very slogan, of describing the duties of a

woman, Kinder, Küche, Kirche (Children, Kitchen,

Church), and Noether endured years of poor

treatment, both as a student and in her career. She

was not allowed to teach under her own name,

bConsistent with the definition of truth, which is axiomatically
defined. Aristotle mentions in his Metaphysics V, “To say of
what is, that it is, or of what is not, that it is not is true”.

but few other seminal contemporary mathemati-

cians quickly realised her talent and supported

her. Hilbert being one among them, supported

her, and sarcastically said, that university is not

a bathhouse to show gender discrimination and

Einstein once expressed her greatness, saying that

Noether was the most significant creative mathe-

matical genius thus far produced since the higher

education of women began. I will stop here,

expressing my inability to describe her gigantic

stature in this small article, by saying, “Hanc

marginis exiguitas non caperet” and point to some

of the interesting biographical notes on her [15,

16]. Now I will come to the actual topic, of

Noether’s theorem. As Jacobi who worked on El-

liptical integrals, all his life, formulated canonical

transformations which play a crucial part both in

classical and quantum mechanics, Noether who

worked all her life on abstract algebra formulated

this beautiful theorem.

2. Noether’s First Theorem

Theorem 2.1. For every continuous symmetry (of

Lagrangian, to say) there is a corresponding conser-

vation law.

Before going into the theorem, we need to

understand the words, symmetry, invariance, con-

servation and Lagrangian. As we have discussed

physics is constructed upon the framework of

mathematical formalisms. The beauty of math-

ematics lies in its abstractness. Representation

serves the role of mid-wife in bringing out aes-

thetics. For instance, even if you write this very

statement 2 > 3, on a wall, with the number 2

written in a bigger font than number 3, you still

can infer that it is wrong, twoness of 2, is never

greater than threeness of 3. Twoness and threeness

are not an innate properties of the corresponding

representational elements 2 and 3 respectively, but

they lie in platonic world,c which has to be seen

through the eye of mind. Consistency being an

important consideration within science, demands

epistemological constructs (taking futuristic up-

cNumber systems are mere representations of platonic ele-
ments, so are the geometric shapes, that we are familiar within
our day to day life. It is not far to see that, the line we draw on
board, strictly will not satisfy Euclidean postulate about line,
which as per that should have strictly one dimension, where
as the line we see has a negligible (but non-zero) breadth, and
so is a point, and so are all shapes that we study. They should
be understood as representations of platonic shapes which are
ideal.
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dations into account) to be paradox-free. At this

point, I should mention that, David Hilbert, pro-

ponent of formalism, tried to establish consis-

tency in any axiomatic system, by the notion of

metamathematics. Later on Kurt Gödel, through

his celebrated incompleteness theorems went fur-

ther imposing fundamental limitations on any

axiomatic system. He showed that consistency can

be achieved, but at the cost of missing out on

the completeness. Pure mathematics operating in

platonic realm, demands internal consistency, but

worries less about the ontological implications.

Unlike physicists, the framework of mathe-

matics works on maintaining one to one cor-

respondence, between platonic realm, and cor-

responding representation set. Nevertheless, few

mathematicians, go applying those platonic

thoughts and formalisms, to real world phe-

nomenon. Sometimes, there are very interest-

ing connections between abstract theories and

real world phenomenon, so interesting that even

founders of such theories, never imagined the

impact of their theories, in real world. Symmetry

is one such thing that has got very interesting

applications. Symmetry refers to the “sameness”

or “similarity” of an object. Study of symmetry

helped a lot, in understanding the hidden laws of

universe. Symmetry entails invariance. A square

has something called four-fold symmetry. If you

rotate the square through an angle of 90◦, with

respect to the horizontal axis, it appears to be the

same, entailing the fact that shape of the square

is invariant under any such rotations. Sphere is

infinitely symmetrical, as it looks the same, in

which ever way we rotate it. So symmetry can be

termed as immunity (thereby making it invariant)

of the shape to look the same when it is subjected

to certain changes (transformations). This very

property of invariance plays an important role

within mathematics. There are numerous invari-

ants discovered, till date, which have a contextual

existence. Dynamism being a central concept, in

sciences, one likes to study such invariants, as

many a time, we cannot use the condition of ceteris

paribus, within science. When everything else is

bound to change, these are the only surviving

links, which act as a connection between the

conditions before and after the change. Plato was

clever enough to surmise the fact that symmetry

plays an intrinsic role in study of nature. This

symmetry has been studied widely in the east

and west, be it in the form of sacrificial altars

constructed using such symmetrical shapes, or be

it the flower of life which was supposed to be the

sacred seed of life [9].

Equations describing the fundamental forces

of nature, adhere to a beautiful symmetry. For

instance, to give you a rough idea, if you compare

reality to a room whose shape you have to find

out, and the room is so big, thereby it is hard

to traverse all the room. Suppose given that it

has axis symmetry, you just have to traverse one

half of it, and thereby you can get to know the

whole picture (since you are guaranteed that, the

other half looks the same). This method is more

popularly called as Divide and Conquer strategy

and it has got interesting applications in the field

of computer science as well. Before entering into

the latter part, at this stage, I refer the reader

to the literature mentioned in the references, for

further reading regarding symmetry [10, 11]. Con-

servation law has been studied within philosophy

long ago, before physicists formulated it in a

mathematical way. For instance, Aristotle’s De

Anima [12] and Metaphysics [13] bear some of the

interesting notions regarding soul, Potentialityd

and Actuality. The idea of Entelecheia (as he calls

it), has been taken further, by Leibniz [14], to

develop the notion of conservation of energy.

3. Being Invariant and Being Conserved

As we have discussed in the introduction, regard-

ing representation of numbers, I need to add that,

there is no objective definition of Energy. As peo-

ple subscribe to various schools of thoughts (like

Formalism, Intuitionism, Conventionalism, etc.),

for defining numbers, physicists also subscribe to

various forms of it, or define it using epistemic

modes. The importance of the theorem lies in the

very fact, that it allows us to define such en-

ergy. Energy is something that is conserved under

time translation. So at-least that’s a kind objective

definition that one can offer in some sense. We

will come to it a little later, and now we will

look into the terms conservation and invariance.

Going back to the introduction, we have to quan-

tify something before us, before we can define

it, epistemically. Descartes introduced reference

dI wanted to add at this point, that the notion of Potentiality,
helped Heisenberg to formulate his potentia interpretation of
quantum states, which to some extent solved measurement
problem.
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frames, or Cartesian coordinate axes, soon after

he realised that one cannot define space, without

reference. So we measure the perceivable so called

primary properties like Height, Thickness, Mass,

etc., of the objects using some calibrated scale.

In doing so one obtains a numerical quantity.

Invariance refers to that numerical quantity being

the same in any reference frame. Conservation on

the other hand refers to that quantity, in a given

reference frame, remains the same throughout any

(given) operation. For instance, take the example

of height. I may measure my height using a scale

which is calibrated to measure height in feet. I

will use it to obtain my height as 6 feet. So if

you build a coordinate axes in India, and measure

my height, it will turn out to be 6 feet. So if you

take me to Germany, and invent a new coordinate

system my height will still remain the same,

even though the underlying Cartesian coordinates

may change (it is vital that they should have

the same units). Distance is invariant to linear

and rotational transformations. So my height is

invariant there, when you take me to a new co-

ordinate system. Given that I am in India, and the

process considered is aging, my height is bound

to change. As I grow I become taller, so it is not

conserved. Repeating, for a quantity to be invari-

ant the number (we assign) will not change in any

coordinate system, where as to be conserved, it

should remain the same throughout the process.

So if something is invariant it means that some

property of it is not changing with respect to

given transformations. This can be stated as hav-

ing symmetry entailed from the given invariance.

4. Getting into “Action”

Let us try to understand the Action Principle.

Determinism added a feather to the hat of physics.

Newton, Laplace and others figured out equa-

tions, that can determine everything in cosmos,

and the model goes by the name of clockwork

universe. Given initial conditions of a system,

physicists are interested in figuring out futuristic

evolution of it. All that you need to do is write

down Newton’s laws of motion. There is a reason,

behind Newton choosing F = m.a instead of

F = m.v. For instance assume that F = mv, and v

being velocity, which is first derivative of distance

with respect to time, F = m. dx
dt =⇒ F = m. xt+h−xt

h ,

therefore xt+h =
F.h
m + xt. So if you know h (in-

finitesimal change), present position xt of particle

at time t, you can predict the position of particle

at some time t + h using the above equation. But

you can clearly see that, the equation is not time

reversible, meaning, if you replace t with −t the

equation F = m. dx
dt will change. So it is not possible

to predict the past of the system given the present,

but you can predict the future with accuracy. If

you drop a stone, from a building, you can easily

infer the final position of the stone (i.e. will lie on

the ground, if there is no obstruction). But seeing a

stone on the ground, you cannot infer from which

floor it came, since the final position of the stone

is same, regardless whether it is dropped from

first floor or hundredth floor. So hence you need a

term that bears past in it, which second derivative

does. Consider the trajectory of a particle, and

when x(t) refers to the position of the particle at

time t, xt+h, xt−h (where h is very small) refer to it

is future and past positions, respectively. Now, if

you consider F = ma = m dv
dt = m

{
{ xt+h−xt

h −
xt−xt−h

h

}

h

}

,

you have the term xt−h in it, which F = mv

lacks. Hence F = mv is not time reversible. In

F = ma = m d2x
dt2 , you can replace t with −t and

then see that equation remains the same (second

order derivative). So not only you can predict the

future but you can reverse the time and predict

the past as well. Hence all the physical laws take

force as F = m.a and moreover it matches with

experimental predictions/observations.

Newton’s laws help us, in finding out the

futuristic evolution of the system, i.e. you start

with the present position, you can calculate the

futuristic position, after infinitesimal time, but

what if we are given initial position xi and final

position xf of the particle, how can one predict

the trajectory taken by the particle? That is done

by using principle of least action. In Newtonian

physics we study two forms of Energy. One being

Kinetic energy, and another is Potential energy,

former is related to how fast a body moves, and

latter, related to work done by forces on a body.

So energy arises as a result of body’s velocity

and work done on it. If we kick a ball, and we

know the initial and final positions, we can use

the principle of least action to figure out the tra-

jectory, and can say that among all possible paths

connecting initial and final positions, it chooses

that path, in which the ball’s kinetic energy, mi-

nus the potential energy, multiplied with time,
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is minimum. In other words if you consider the

difference between kinetic and potential energies,

and integrate them with respect to time, you get

something called action. So the path with least

action is chosen. This property of nature adhering

to “least..” should not be taken as it is miserliness,

but more of nature being efficient, and we do not

know why nature behaves so.e

Physicists realised this fact long back, that

nature adheres to some kind of least action or least

time. For instance Fermat, realised that among

all possible paths that a light ray can take, it

selects the path that takes least time for it to

traverse.f Descartes (in his Discourse of method),

figured out the principle of least time. Later on

after Newton published his Principia, the problem

of brachistochrone (least time) was studied in

a concrete sense. The problem of determining

the shape of perimeter, that can hold maximum

area within it, goes under the name of Dido’s

problem (more about it here [17]). The way honey

bees construct their honey comb in hexagonal

shape, shows us their optimised use of space, that

is available before them. They somehow know

that such kind of tiling, will fill the whole area,

without any gaps, and it is easy to construct as

well. Laws as we know are discovered, but the

underlying phenomenon are an intricate part of

nature, woven into the day to day happenings.

For instance, Spider in some sense knows Hooke’s

law, for verily it weaves its web seeing that stress

should be proportional to strain. Since then Huy-

gens et al. worked on it, and Euler proposed sta-

tionary action along a path, and Hamilton later on

founded a concrete law, which now plays a crucial

role both in Classical and Quantum physics.

Now comes the fundamental question, how

come the ball knows the path it has to take

such that it is kinetic energy, minus the potential

energy will be less? There are infinite number of

paths available before it, and it is not that it is

going to visit each path, to sit down and calculate

the action and then decide which path to take.

The answer comes when you embed the New-

ton’s laws into a bigger structure, called Euler–

Lagrangian equations. So once you have Euler–

Lagrange equations, you can see how Newton’s

laws of motion follow from that. So one way to

eEinstein once said, “Nature hides her secrets because of her
essential loftiness, but not by means of ruse.”
fLater on Feynmann formulated his path integral to explain
this phenomenon more clearly.

see the success of Newton’s laws, lies in the fact

that, they are embedded in a bigger structure,

which if you work out in a reverse way, makes the

action stationary, and thereby selects a path, with

least action. So now you can see that particle need

not traverse all the possible ways available before

it. It has that beautiful Euler–Lagrangian equation

which one can apply for any instant of time,

which tells the particle how to move, maintaining

least action. One may also wonder why only

Kinetic and potential energies are involved here.

Nature always tries to minimise the difference

between the both. If you consider (Newton’s)

Absolute Space time model, where you can work

with Galilean transformations,g you can see that

there is continuous exchange between kinetic and

potential energy. Consider a ball thrown towards

the sky, at every point, on ascent, kinetic energy is

getting converted into potential energy, and at the

top most point, when kinetic energy is zero, balls

potential energy again gets converted into kinetic

energy. Nature adheres to many such minimum

and maximum principles, for instance in an iso-

lated system, entropy is maximum, and so you

have such extremals with Gibb’s free energy and

many other things.

The difference between Kinetic and Poten-

tial energy is called as Lagrangian. Let us as-

sume a coordinate system, with coordinates as

q = (q1, . . . , qn), then Lagrangian is a function

L(q,
.
q, t) =

∑n
i=1

1
2 m(

.
q

i
)2 − U(q1, . . . , qn) (i.e. Kinetic

Energy minus Potential energy, and we follow

Newton’s Dot notation for representing a deriva-

tive, and hence
.
q is dq

dt ,
..
q =

d2q

dt2 , etc.). Let us assume

that Lagrangian is explicitly time independent

(though it depends upon time, implicitly, as coor-

dinates q(t) are functions of time). Now the action

as we discussed is Lagrangian integrated over

time. Given initial position q(ti) and final position

q(tf ) of the particle at time ti and tf respectively,

Action A(q) =
∫ tf

ti
L(q,

.
q) dt. Action A(q(t)) is a

complex entity, as it is a function of a function

(functional). It is a function of q(t), which in turn is

a function of t. So for some set of t′s, q(t) produces

a family of functions, and when you feed that

family of functions to action, it spits out a number.

Now among all the paths available between the

gAdding to this, in Einsteinian Space time which is relativistic,
this principle of least action plays a geometrical role, in
figuring out the geodesics, the shortest path between two
points on a non-Euclidean plane, and thereby allowed Einstein
to interpret gravity geometrically.
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points q(ti), q(tf ), that path which minimises the

action is chosen. So holding the initial and final

points, let us perturb the path little bit such that

q→ q+δq, and the factor δq (infinitesimal change)

which we use to perturb the path, should vanish

at end points, as we are not going to disturb

them. Hence δq(ti) = δq(tf ) = 0. Given a function

g(m1, . . . , mn), of n variables, you can vary the

variables infinitesimally mi → mi + δmi (∀i = 1 to

n), and revamping function after that variation,

we obtain g(m1 + δm1, . . . , mn + δmn) which can

be related to g(m1, . . . , mn) using taylor expansion

as g(m1 + δm1, . . . , mn + δmn) ≈ g(m1, . . . , mn) +
∑n

i=1 δmi
∂g
∂mi

. One assumption we made is that

higher order terms O((δmi)
2) are negligible. Now

considering action A(q) =
∫ tf

ti
L(q,

.
q) dt, and under

the variation q→ q + δq, we have

A(q+δq)=

∫ tf

ti

L(q+δq,
.
q+δ

.
q) dt

A(q+δq)=

∫ tf

ti

{

L(q,
.
q)+
∂L

∂q
δq+
∂L

∂
.
q
δ
.
q+O((δq)2)

}

dt

A(q+δq)=

∫ tf

ti

L(q,
.
q) dt+

∫ tf

ti

{

∂L

∂q
δq+
∂L

∂
.
q
δ
.
q

}

dt

A(q+δq)=A(q)+

∫ tf

ti

{

∂L

∂q
δq+
∂L

∂
.
q
δ
.
q

}

dt

A(q+δq)−A(q)=

∫ tf

ti

{

∂L

∂q
δq+
∂L

∂
.
q
δ
.
q

}

dt.

From integration by parts, if we have two

functions f (x), g(x), and F(x) = f (x)g(x), thereby
dF
dx = f

.
g+g

.
f , and so

∫ x2

x1

dF
dx dx =

∫ x2

x1
f
.
g dx+

∫ x2

x1

.
fg dx,

where
∫ x2

x1

dF
dx dx = F(x)|x2

x1
. So by that, you can write

∫ tf

ti

∂L

∂
.
q

d
dt

(δq) dt = −
∫ tf

ti

d
dt

(

∂L

∂
.
q

)

δq dt +
[

∂L

∂
.
q
δq

]tf

ti

, and

the last term vanishes since change at end points,

is zero.

A(q + δq) −A(q) =

∫ tf

ti

{

∂L

∂q
δq +

∂L

∂
.
q

d

dt
(δq)
}

dt

δA(q) =

∫ tf

ti

{

∂L

∂q
δq −

d

dt

(

∂L

∂
.
q

)

δq

}

dt

δA(q) =

∫ tf

ti

{

∂L

∂q
−

d

dt

(

∂L

∂
.
q

)}

δq dt

δA(q)

δq
=

∫ tf

ti

{

∂L

∂q
−

d

dt

(

∂L

∂
.
q

)}

dt.

Action is extremised if, δA(q)
δq
→ 0 so which

implies that integrand on RHS should be zero.

Which is nothing but saying ∂L
∂q
=

d
dt

(

∂L

∂
.
q

)

. So that

equation we obtained is called Euler–Lagrangian

Equation (E.L.E), which encapsulates many things

related to motion. For instance you can derive

Newton’s laws of motion, taking Lagrangian for

one dimensional motion, as L(q,
.
q) = 1

2 m
.
q

2
−U(q),

and you feed it into E.L.E, you will get mq̈ =

−
d U(q)

dq which is Newton’s law (q̈ being the accel-

eration). You can also see that the term ∂L

∂
.
q

gives

out m
.
q which is momentum. So generally, pi =

∂L

∂
.
q

i

is called the conjugate momentum.

5. Conservation Laws

So as we have discussed, invariance is an im-

portant property. For instance, you go to a shop

and buy a costly watch. You want it to remain

invariant (in context of working flawlessly, as it

used to work inside the shop) for a long time.

But since such invariance is not guaranteed, com-

panies promise that goods will be invariant, and

will not be spoiled, for a particular time period

(so called guaranty and warranty period). But

you cannot expect universe to offer you a set of

laws with a warranty period. That would be as

if Higgs field is giving you a warranty that you

will have same amount of mass, till 3 years, and

after that your mass is bound to increase and

decrease.h So Noether’s wonderful insight was to

link up symmetries with conserved quantities. We

will come to the profound implications of that

theorem.

Recall those school days. You have done an

experiment in the beginning of the year, and

recorded the results of it. You have got to repeat

the same experiment in the term exams, and

you will obtain the same results, if you repeat

the experiment in an exact way, under the same

conditions. We can now say that your experiment

is invariant over time, if you do it today, or

some other day, it will give you same results. So

something should be conserved. Though if you

assume that Lagrangian is time independent, as

we have seen it has implicit time dependence

through coordinate variables which depend upon

time. Consider dL(qi ,
.
q

i
)

dt =
∑

i
∂L
∂qi

.
q

i
+
∂L

∂
.
q

i

..
q

i
, and we

know that pi =
∂L

∂
.
q

i , we can write
dpi

dt =
∂L
∂qi

(using Euler–Lagrangian Equations). Now, we can

write dL
dt =

∑

i
.
pi

.
q

i
+ pi

..
qi. By chain rule you can

write, RHS as d
dt

(

∑

i pi
.
q

i
)

and now you can see

hMay be a good news for those who are obese, but not for all.
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that though Lagrangian may not be conserved,

but this quantity, d
dt

�

�

i pi
.
q

i
�

− dL
dt = 0 which is

d
dt

��

�

i pi
.
q

i
�

− L
�

is conserved. So this very term
�

�

i pi
.
q

i
�

− L has a special name, and it is called

the Hamiltonian, or the total energy of a system.

So if Lagrangian is time invariant, then Total

energy, or Hamiltonian is conserved (more about

Hamiltonian refer to Appendix), and this is so

called Law of Conservation of Energy.

Now imagine you are playing pocket billiards

in a big room sans windows, and you have no

clue of what is happening outside the room.

Assume that I start pulling the carpet on which

you are standing slowly, and since you are so

engrossed in playing, you do not notice that you

are moving. After sometime, you are shifted to

a new position within the same room. Apropos,

you will still continue to play in the same way.

You will get the same results, and you are spa-

tially invariant, since you do not even notice any

change. So in the same way, I start rotating the

whole room, and still you continue to play, in the

same way. After sometime you are at an angle

of say 35◦ with respect to the horizontal axis. It

will not make any change, since I am moving the

whole setup, and you are rotationally invariant.

But what if, I suddenly press a button, which

pulls the room down. Then you will fall down,

and upon hitting the ground you give an angry

what-happened look, scratching your head. So any

such sharp changes in velocity ruin invariance.

Your velocity, changed, and all the billiard balls

got disturbed. Now you have to arrange them

again using a rack. So you are invariant of spatial

and angular transformations, and there will be

two associated quantities corresponding to them.

Let us assume that qi = (q1, q2) (you can

consider i running from 1 to any N, and work

out in a similar way, but I am considering two

dimensions) denote your position in the room,

and I displaced the whole setup, in the direc-

tion of ki
= (k1, k2) through a distance of b. So

now the new coordinates will be qi = qi + b ki.

Since we assumed that Lagrangian is invariant of

such transformations, we can say that dL
db

�

�

�

�

b=0
= 0,

and it follows that dqi

db = ki, and since we shift

your position so slowly, without changing veloc-

ity, we can say that d
.
q

i

db = 0. Now considering

that 0 = dL
db =

�2
i=1
∂L
∂qi

dqi

db +
∂L

∂
.
q

i

d
.
q

i

db , and since the

second term vanishes, and plugging in k1 and k2,

0 = ∂L
∂q1

k1
+
∂L
∂q2

k2 and by Euler–Lagrangian equation

we can write for all i, ∂L
∂qi
=

d
dt

�

∂L

∂
.
q

i

�

and so we

can write 0 = d
dt

�

∂L

∂
.
q

1

�

k1
+

d
dt

�

∂L

∂
.
q

2

�

k2 and en passant

k1, k2 choosen arbitrarily, to satisfy that equation,

both d
dt

�

∂L

∂
.
q

1

�

, d
dt

�

∂L

∂
.
q

2

�

must be zero. So we can see

that p1 =

�

∂L

∂
.
q

1

�

and p2 =

�

∂L

∂
.
q

2

�

are components

of momentum corresponding to q1, q2 respectively,

and
dp1

dt = 0,
dp2

dt = 0, which means that momentum

remains unchanged (conserved) over time. The

vector P = (p1, p2) can be visualised as the total

linear momentum. This is Law of Conservation

of Linear Momentum.

Now let us consider the case of rotations. To

rotate coordinates we take the help of rotation

matrix R, and if we work in two dimensions

(q1, q2), the rotation operation is matrix multipli-

cation which is

�

q1

q2

�

=













cos θ −sin θ
sin θ cos θ













.

�

q1

q2

�

such that q1 → q1cos θ−q2sin θ, q2 → q1sin θ+q2cos θ,
for very small ǫ, if we take θ = ǫ we can write

cos ǫ ≈ 1 and sin ǫ ≈ ǫ when ǫ → 0 (using

small angle approximations). Now substituting

that, by rotation coordinates transform as q1 →

q1 − ǫq2, q2 = q2 + ǫq1, thereby δq1 = −ǫq2, δq2 = ǫq1.

Now for a change, let us ask this question, given

a function L(qi,
.
q

i
) what is δL, in other words

what is the variation in L, when we vary its

parameters a little. δL =
�

i

�

∂L
∂qi
δqi + ∂L

∂
.
q

i δ
.
q

i
�

, us-

ing Euler–Lagrangian Equations, and conjugate

momentum pi, we can write it as
�

�

i
.
piδq

i
+ piδ

.
q

i
�

which is nothing but, d
dt

�

i

�

piδq
i
�

. So now under

the variation δ if δL = 0 then d
dt

�

i

�

piδq
i
�

= 0

(which is called Noether’s Charge). Now sub-

stituting the obtained values for δqi (which are

δq1 = −ǫq2, δq2 = ǫq1), we obtain δq1

dǫ = −q
2, δq

2

dǫ = q
1).

Since δL = d
dt

�

i

�

piδq
i
�

= 0, we can consider

the parameter as ǫ and since we assume that

Lagrangian is invariant of ǫ, dL
dǫ =

�

i

�

pi
dqi

dǫ

�

= 0. So

if Lagrangian is invariant over that rotation ǫ then

it means the conserved quantity is
�

i

�

pi
dqi

dǫ

�

, and

since we are working with two dimensions here,

it is p1
dq1

dǫ + p2
dq2

dǫ , and substituting the values we

have we can write the quantity that is conserved is

p2q
1−p1q

2. The term is called Angular momentum

L about the third axis, other than q1 and q2. This

pretty much summarises Conservation Law for

Angular Momentum.
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6. Mathematical Codification of Noether’s

Theorem, for Aficionados

By a configuration space, I mean a space whose

points correspond to all possible configurations

(Degrees of Freedom) a system (say a rigid body

or a group of particles) can occupy. One would

naturally jettison, the idea of using Euclidean

space, and go for a manifold, to account compli-

cated configurations, since a latter has got non

trivial topology, which former lacks. Addition-

ally a manifold resembles Euclidean space locally.

A curve in such configuration space represents

the futuristic evolution of the system. Globally,

a Manifold need not be flat, and thereby it is

hard to generalise the notion of vector en scène.

So one would naturally construct a tangent space

at every point on that manifold, which bears all

possible vectors pointing tangentially with respect

to that point. Now on that tangent space, one

can introduce the notions of addition, subtraction,

transformation of vectors, etc., and all possible

velocities that the system can take, are represented

as vectors, which are housed in the tangent space,

corresponding to its configuration space.

In a given configuration space, say M which

is a manifold, the points are labelled by qi (gen-

eralised coordinates i = 1, 2, . . . , N and N being

Degrees of freedom) which represent the possible

positions a system can occupy. Velocity
.
qi (dot

represents the first time derivative) of qi (function

of t), is a tangent vector lying in the tangent

space TqiM corresponding to M. Given a set of

coordinates qi tangent space TqiM is spanned

by the basis of tangent vectors at zero,
{

∂
∂qi

}

,∀i.

Subsequently, any (velocity) tangent vector on

tangent space,
.
q with values

.
qi can be expressed

as a linear combination of basis tangent vectors

as,
.
q =
∑

∀i

.
qi ∂
∂qi

. At this point one would prefer

bundling up all such tangent spaces, to obtain

tangent bundle TM, by taking a disjoint union

on tangent spaces, i.e.

TM =
⋃

qi∈M

TqiM =
⋃

qi∈M

{

(

q
i,

.
q

i
)

∣

∣

∣

∣

.
q

i ∈ TqiM

}

.

The Fiber Coordinates
(

qi,
.
qi
)

of the tangent

bundle TM adhere to a natural projection π :

TM �→ M, such that π
(

qi,
.
qi
)

= qi, which thereby

maps each tangent space TqiM onto a point qi on

the manifold M. It is not far to see that tangent

bundle is, but a kind of vector bundle. By a path

or trajectory I mean a function q : [ta, tb] �→ M,

such that at every instant of time tm, q(tm) = qk,

spits out the position that a system takes in config-

uration space, corresponding to that time. Given

two fixed end points qa and qb in a configuration

space, there are many paths connecting them.

Trajectory space ξM(qa, qb), is a set that captures

all possible paths, between those end points, i.e.

ξM(qa, qb) =
{

q : [ta, tb] �→ M
∣

∣

∣

∣

q(ta) = q
a, q(tb) = qb

}

.

To add, ξM =
{

ξM(qa, qb)
}

∀ qa, qb ∈ M is an infi-

nite dimensional manifold. Now, we can define

Lagrangian to be a function L : TM �→ R.i

On the local coordinates of the Tangent Bundle,

L(q1, . . . , qN,
.
q1, . . . ,

.
qN) = 1

2 mgij
.
q

i .
q

j
− U(q1, . . . , qN),

which is nothing but the difference between ki-

netic and potential energies of the system, and

following Einstein’s summation convention gij is

a metric tensor, and kinetic energy, is summed

up over all coordinates. Given initial and final

positions qa, qb ∈ M, one can define an action

as A : ξM(qa, qb) �→ R, A(q) =
∫ tb

ta
L(q,

.
q, t)dt,

where ξ is defined as above. Amongst all paths

in ξ nature chooses that path for which A(q) is

minimum.

Given a trajectory space, ξM(qa, qb), and a path

q in it, with end points, qa, qb one can consider

(one parameter) smooth map Ψ : ξM × R �→ ξM,

with the properties, Ψ0(q) = q is an identity map,

Ψs(q) = qs for some s ∈ R, and qs is a new path

in the space ξM with end points Ψ(qa),Ψ(qb). More

importantly, Ψ satisfies Ψp ◦ Ψs(q) = Ψs+p(q) = qs+p.

Suppose given that path q extremises A(q), we

cannot assure that qs (which is Ψs(q)) necessarily

makes the action stationary, unless the Lagrangian

is invariant, i.e. L(q,
.
q) = L(Ψs(q),Ψs(

.
q)), where

Ψs(
.
q) =

d

dt
Ψs(q). So now starting with L(q,

.
q) =

L(Ψs(q),Ψs(
.
q)) ⇒

d

ds
L(q,

.
q) =

d

ds
L(Ψs(q),Ψs(

.
q)).

Since LHS do not depend upon s, using chain rule

0 =
d

ds
L(Ψs(q),Ψs(

.
q))

0 =
dL

dΨs(q)

dΨs(q)

ds
+

dL

dΨs(
.
q)

d

ds

(

d

dt

(

Ψs(q)
)

)

(

∵ Ψs(
.
q) =

d

dt
Ψs(q)

)

By using Euler Lagrangian Equation

dL

dΨs(q)
=

d

dt

(

dL

dΨs(
.
q)

)

iIf Lagrangian has explicit time dependence, then L : TM ×
R �→ R.
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we can rewrite the above equation as

0 =
d

dt

(

dL

dΨs(
.
q)

)

dΨs(q)

ds
+

dL

dΨs(
.
q)

d

dt

(

dΨs(q)

ds

)

0 =
d

dt

(

dL

dΨs(
.
q)

dΨs(q)

ds

)

[Chain rule]

You can see that term in the brackets, which

does not change with time, and it is called the

constant of motion. You can go further and eval-

uate it at s = 0, and since it is identity element

Ψs(q)|s=0 = q, and so the constant of the motion is
dL

d

(

dq

dt

)

dΨs(q)

ds

∣

∣

∣

s=0
, which is

dL

d
.
q

dΨs(q)

ds

∣

∣

∣

s=0
. Noether’s

theorem, can be stated as, “Given a set of trans-

formations {Ψs} under which Lagrangian is invariant,

then such an invariance entails a conserved quantity
dL

d
.

q

dΨs(q)

ds

∣

∣

∣

s=0
, which is constant of motion, which

remains unchanged. Now, at this point, for the sake

of brevity, consider Lagrangian of a free particle as

L =
1

2
m

.
q

2
, if you are au fait with Vector calculus

and Lie groups, it is not far to see that for the

transformations Ψs(q(t)) = q(s+t),Ψs(q(t)) = q(t)+sk,

Ψs(q(t)) = esMq(t) the conserved quantities are
N
∑

i=1
pi .qi −L (Hamiltonian),

N
∑

i=1
m

.
q

i
.k (Linear Momen-

tum along vector k) and
N
∑

i=1
m

.
q

i
(M.q)i (Total Angu-

lar Momentum) respectively, where q(t) refer to

generalised coordinates as a function of time, k is

an element of vector space, andM (anti-symmetric

matrix) belongs to Lie Algebra so(N) of the cor-

responding Lie group SO(N) (esM ∈ SO(N) is a

rotation matrix). This pretty much summarises the

mathematical formulation of the theorem.

7. Conclusion

If Lagrangian is invariant of certain transfor-

mations, it has a symmetry, and thereby there

is a conserved quantity anent to such symme-

try. Apart from establishing one to one corre-

spondence between the conserved quantities, and

symmetries underlying the Lagrangian, Noether’s

theorem has far reaching implications. One can

see that it actually connects the epistemic and

ontic states in some sense. Einstein’s conception

of space and time being relative, reflects the fact

that they have a subjective basis, and one can

obtain the same experimental results, by synchro-

nising their clocks or scaling their coordinates

accordingly between reference frames. On the

other hand quiddities.j like Energy, momentum,

etc., have ontological basis, but can be subjec-

tively perceived as well. If a theory is invariant

of subjectively perceived (epistemic data, such as

distance and time) constructs, it has a correspond-

ing conserved entity (ontological, like energy and

momentum), verily captures the essence of the

Noether’s theorem from a philosophical perspec-

tive, apart from it is formal definition. I conclude

this article, with this verse of Bhartr.hari.k who

in his Nitishatakam, referring the eternal victory

attained by masters, says,“Nāsti yes. āṁ yas. āh. kāye
jarāmaran. ajaṁ bhayaṁ”, “Whose body of fame,

has no fear of age or death”. Noether, as men-

tioned above, continues to live forever, through

her works.

8. Appendix

This energy has a special name within physics.

It is called Hamiltonian of a system, which is

the total energy of the system, denoted by H =

K.E + P.E, you may then wonder what’s the use

of Hamiltonian when we have Lagrangian with

us? Hamiltonian is very important in quantum

mechanics as it has got a symplectic structure.

Analogous to the Euler’s–Lagrangian equations,

we have two intertwined equations namely

.
qi =

∂H

∂pi
and

.
pi = −

∂H

∂qi
.

qi’s and pi’s are generalised coordinates for

more than one dimension, and
.
q and

.
p being first

order derivatives of position and momentum with

respect to time. These two equations are called

as Hamiltonian equations. So using both of them,

you can predict the evolution of the system, in

phase space. More importantly, you can model

the motion in phase space, as a fluid, using a

vector field. Hamiltonian is a function of position

q and momentum p, denoted by H (q, p), where as

Lagrangian is a function of position q and velocity
.
q, denoted by L(q,

.
q). Hamiltonian is a constant of

motion, it wont change over time (it is conserved),

where as Lagrangian itself is not conserved, but

it has conserved quantities corresponding to each

jDerived from Latin, Quidditas, which means the essence of
object/their universal qualities (whatness).
kA Hindu Philosopher, Poet and a grammarian, who lived
around 5CE, is well known for his magnificent works in
Sanskrit. Nitishataka, is a set of 100 poems written on hu-
man behaviour in a civilised society, on polity prudence and
wisdom.
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invariant it has, which follow from Noether’s

theorem. You can construct action principle from

Hamiltonian as well, and I just leave it here

by saying that, you can convert Lagrangian to

Hamiltonian using Legendre transforms.
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