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The n-dimensional toric variety is a complex
algebraic variety with an algebraic action of (C∗)n

that has an open dense orbit. For instance, the
complex projective space CPn = Cn+1 − {O}/ ∼ of
complex dimension n with an (C∗)n-action given
by

(C∗)n × CPn → CPn

(t1, t2, . . . , tn) · [z0; z1; . . . ; zn] �→ [z0; t1z1; . . . ; tnzn]

is a toric variety since there is an open dense orbit
{[z0; z1; . . . ; zn] | zi � 0 for all i}. An interesting fact
is that such toric varieties can be expressed by a
combinatorial method. Among the orbits of action
of (C∗)n for an n-dimensional toric variety X, let
X1, . . . , Xm be the closure of orbits with a complex
codimension of 1. Here, if you consider the fol-
lowing family of subsets of [m] = {1, 2, . . . , m}

KX :=















I ⊂ [m] |
⋂

i∈I
Xi � ∅















,

you will obtain a simplicial complex. On the other
hand, since Xi is fixed by a C∗-subgroup of (C∗)n,
it can be thought that each Xi corresponds to a
single element λi of Hom (C∗, (C∗)n) � Zn. (In par-
ticular, the sign of λ is determined by the direction
of the action of (C∗)n on the normal bundle of Xi,
but here, detailed explanations will be skipped.)
Now, let us consider the half lines that spread in-
definitely in the direction of λi on Rn. If we collect
all cones, which are cσ = {

∑

i∈σ ciλi | ci ≥ 0} for
the element σ of KX, they become combinatorial
objects called fans. For example, in the above case
of CPn, we can set Xi = {[z0; z1; . . . ; zn] | zi = 0}, and
here,

λi =

{

ei, if i = 1, 2, . . . , n;
−e1 − · · · − en, if i = n + 1

and KX becomes a simplex. For instance, the fan
corresponding to CP2 is given in Fig. 1.

The details of the determination of the rela-
tionship between the toric variety and the fan
are given in the books of Fulton [7] or Oda
[11]. What is surprising is that when there are
toric varieties, the fans can be corresponded to

Fig. 1. Fan corresponding to CP2.

and their reverse is also valid. This is called the
fundamental theorem of toric geometry.

1. Fundamental Theorem of Toric
Geometry

There is a 1-1 correspondence relationship be-
tween the family of toric varieties and the family
of fans.

According to the fundamental theorem of toric
geometry, we can consider objects of algebraic
geometry called toric varieties to be combinato-
rial objects called fans. This consideration can
be the link connecting algebraic geometry and
combinatorics. There are many problems that are
created from understanding actual combinations
in terms of algebraic geometry, or problems that
are solved in reversed circumstances. The most
famous outcome among them is that the prob-
lem regarding the number of faces of simplicial
convex polytope proposed by McMullen [9]. In
1971, this problem was solved by Stanley by using
the idea of toric geometry. McMullen’s problem is
stated as follows: If an n-dimensional simplicial
convex polytope P is given, let fi be the number of
i-dimensional faces where ( f0, f1, . . . , fn−1) is called
the f -vector of P. The h-vector of P, (h0, h1, . . . , hn),
is defined to satisfy

h0tn+h1tn−1+ · · ·+hn = (t−1)n+ f0(t−1)n−1+ · · ·+ fn−1.
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McMullen proposed the following problem,
which is nowadays called g-theorem, as the neces-
sary and sufficient conditions for a certain vector
(h0, h1, . . . , hn) to be the h-vector of P.

2. g-theorem

An integral vector (h0, h1, . . . , hn) (where h0 = 1) is
the h-vector of some simplicial convex polytope of
dimension n if and only if it satisfies the following
conditions:

(1) hi = hn−i (This is commonly called the Dehn–
Sommervile equation.)

(2) 1 = h0 ≤ h1 ≤ · · · ≤ h[n/2]

(3) hi+1 − hi ≤ (hi − hi−1)〈i〉.

Here, a〈i〉 is defined as follows: for positive inte-
gers a and i, the natural numbers that satisfy the
following equation:

a =
(

ai

i

)

+

(

ai−1

i − 1

)

+ · · · +
(

aj

j

)

ai > ai−1 > · · · > aj ≥ j ≥ 1 always exist uniquely,
where

a〈i〉 =
(

ai + 1
i + 1

)

+

(

ai−1 + 1
i

)

+ · · · +
(

aj + 1
j + 1

)

.

The existence of the polytope P that has the
vector satisfying the necessary and sufficient con-
ditions for this theorem, i.e., the above three
conditions (1)–(3) for the h-vector was solved by
Billera–Lee [1], and its converse was solved by
Stanley [12]. Stanley actively used the theories
in various fields including toric geometry, and
the proof can be briefly described as follows: In
general, if the n-dimensional simplicial convex
polytope P exists, there is always a fan (strictly
speaking, a simplicial fan) on it, and according to
the fundamental theorem of toric geometry, there
exists its corresponding projective toric variety
X, where it is known that the 2i-th Betti num-
ber dimQH2i(X;Q) of X is the same as hi of P.
Therefore, Property (1) is satisfied by the Poincaré
duality theorem of topology, Property (2) by the
hard Lefschetz theorem of algebraic geometry,
and Property (3) by the result of Macaulay’s study
using the commutative algebra of H∗(X). Stan-
leys splendid and neat proof served as a catalyst
for integrating toric geometry and combinatorics.
(McMullen [10] proved the g-theorem again using
a pure combinatorial method.)

Thereafter, the theory of toric geometry was
developed by using the methods of topology

more frequently instead of using the methods of
algebraic geometry. If you think about the unit
elements in C∗ of (C∗)n acting on a toric variety,
you will know that there is also an action of the
torus Tn = (S1)n ⊂ (C∗)n on the toric variety.
Therefore, a toric variety can be understood as a
topological space that has the action of the torus.
The topological space that contains the torus sym-
metry has already been studied as an important
object in transformation groups, etc., since the
1950s, but its full-scale examination began only
after the late 1980s when the ideas of studies on
toric varieties were applied to correspond them to
combinatorial objects. Pioneering works of Davis–
Januszkiewicz [6], Buchstaber–Panov [2], Hattori–
Masuda [8], etc., have been expanding the no-
tion of toric varieties to topological spaces that
have various torus symmetries. In particular, in
such a development stage, the geometric objects
frequently used in topological methods including
algebraic topological methods were expanded to
general topological spaces than the toric varieties.
Furthermore, combinatorial objects have been de-
veloped not only for fans and simplicial convex
polytopes but also in the expanded domains of
general objects such as multi-fans or simplicial
spheres. Further, these mathematical objects are
considered important in symplectic geometry as
well since, for example, a symplectic manifold
having a Hamiltonian Tn-action can be under-
stood as a toric variety. As such, not only algebraic
geometry and combinatorics but also topology
and symplectic geometry formed very close re-
lationships with each other.

A series of studies on the topological spaces
that have such torus actions are called toric topol-
ogy, and this terminology was first used in the
early 1990s by a study group of Manchester Uni-
versity in the UK. Thereafter, Buchstaber–Ray [3]
has used the term “Toric Tetrahedron” to express
the characteristics of toric topology as an aca-
demic subject.

In general, researchers who investigate
toric topology are interested in the arbitrary-
dimensional topological spaces and are particu-
larly interested in the 2n-dimensional topological
spaces that have the actions of Tn. This is
because if there is an action of torus T on the
topological space M, at an arbitrary point x of
M, dim T + dim Tx ≤ dim M (where Tx ⊂ T is
the isotropy subgroup at x) must be satisfied.
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Fig. 2. Toric tetrahedron.

In particular, if this action has a fixed point,
2 dim T ≤ M must be valid since dim Tp = dim T
at the fixed point p. That is, a 2n-dimensional
topological space having the action of Tn is a
topological space having the most symmetries.
Among topological spaces, one usually consider a
manifold because it has many nice properties. A
torus manifold is a closed smooth manifold of even
dimension admitting an effective half dimensional
torus action with non-empty fixed point set. In
mathematics, when an object has many symme-
tries, it is often expressed as “beautiful”. In other
words, the studies on such torus manifolds can
be viewed as those on the most beautiful objects
in topology. Furthermore, since these objects are
very natural, many mathematical objects are likely
to have structures of torus manifolds. For exam-
ple, since the surface of the rotating Earth is a
two-dimensional manifold S2 that has an action
of S1 and has fixed points of the North and South
Poles, it can be viewed as a torus manifold. Of
course, all toric varieties are torus manifolds.

One of the important problems for such torus
manifolds is the problem of classifying torus
manifolds topologically. Since the basic aim of
topology is to classify the topological spaces, the
topological classification problem of torus mani-
folds is an attractive problem itself. Since Euler
found an invariant value of the topological space
called the Euler number, the algebraic invariants
such as the fundamental group and homology
have been developed for the purpose of classi-
fying topological spaces. The Poincaré conjecture,
which asks whether the topological type of sphere
can be characterised by its topological invariants,
has been recognised as one of the most impor-
tant problems in mathematics for a long time. A

sphere in the Poincaré conjecture is the one of the
simplest manifolds, but as it took the researchers
100 years to solve its topological equivalence,
the complete classification of general topolog-
ical manifolds should be also a very difficult
problem — may be nearly impossible to solve.
Therefore, we can think of classifying topological
spaces having better structures and yet more com-
plex shapes than Sn, and from this perspective,
the classification problem of topological spaces
having certain geometric structures is important.
Therefore, it is very natural to ask about the
topological classification of manifolds that have
symmetric structures.

One of the interesting questions on the topo-
logical classification problem of torus manifolds is
“Are smooth compact toric varieties (abbreviated
as toric manifolds) classified up to homeomor-
phism (or diffeomorphism) by their cohomology
rings?”

3. Problem (Cohomological Rigidity
Problem for Toric Manifolds)

If the cohomology rings of two toric manifolds
are isomorphic as graded rings, are these two
manifolds homeomorphic or diffeomorphic?

Since many topologists think that cohomol-
ogy rings are invariants too weak to classify as
differential manifolds, they will not ask a ques-
tion like the above. However, for example, the
cohomology rings in Freedman’s classification of
simply connected four-dimensional manifolds can
be sufficiently strong invariants for appropriate
types of manifolds. An interesting fact is that no
example has been found yet to disprove the above
question; in fact, many examples of classifications
based on cohomology rings have been discovered.
For example, the fact that toric manifolds, where
the product of complex projective spaces or the
Picard number is 2, are all classified as differential
manifolds by cohomology rings was proved by a
joint study [4] that I conducted with my academic
adviser Prof Dong Youp Suh of KAIST, Korea and
Prof Masuda of Osaka City University, Japan.

Toric manifolds not only lead to the above
question due to the property of their symmetries
but also lead to various types of topological and
combinatorial rigidity; thus, reading the paper
summary [5] will be helpful in understanding the
situations about recent studies.
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As discussed above, toric topology is to study
mathematical objects that have beautiful symme-
tries, and because of the good properties of the
treated objects, the development of toric topology
is progressing rapidly. Reflecting such a trend, a
large-scale conference on toric topology will be
held in Daejeon as one of the satellite conferences
of the ICM 2014 to be held in Seoul; I hope that the
readers will show a lot of interest in and support
for the same.
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