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1. Preface

White noise does not mean unwanted sounds, but

it is useful for science as well as for daily life

through the mathematical theory that we shall

explain in this note.

The white noise theory is an analysis of func-

tions of continuously many variables and is nat-

urally developing into the modern theory of

stochastic analysis.

It applies to things of all sizes; quantum

dynamics, statistical mechanics, biology, statis-

tics, even sociology. Yet, the white noise theory

continues to discover new directions in science

successfully.

The idea of our theory is reductionism and

analysis applying for everything that can be mod-

elled as a stochastic system over some probability

measure space that we can form. Once a model is

given, we form a system of independent random

variables containing the same information as the

stochastic system just modelled. Thus, we are

ready to analyse the given system. Then follows

mathematical analysis and applications.

One may wonder why it begins with the analy-

sis of functions of “continuously many” variables

instead of finite or countably infinite variables.

The main reason is that we are interested in a

function of analog events: in fact, interesting cases

are mostly expressed as functions of continuously

many basic random variables. This situation is

quite different from the discrete cases where only

finite or countably infinite variables are involved.

The main aims of the present note are in order.

i. Rigorous introduction of noises in line with

reductionism.

ii. Functionals of noises with special emphasis

on those of Gaussian case, i.e. white noise.

We are naturally led to the space of gener-

alised functionals of the noise.

iii. Calculus of generalised functionals.

iv. Introduce the infinite dimensional rotation

group to discuss the harmonic analysis aris-

ing from the group.

v. Significant fields of applications.

2. Noises

It is difficult to introduce a system of continu-

ously many independent random variables, e.g.

those with parameter space R1. To fix the idea,

assume that they are nontrivial and identically

distributed. Then the joint distribution of such a

system will not be separable, so that it is impossi-

ble to discuss within ordinary theory of calculus.

Our first problem is to overcome this difficulty.

Our idea is to take the time derivatives of an

additive process, let it be denoted by Z(t), t ∈ T,

T being an interval of R1. We assume that Z(t)

is a Lévy process. The Z(t) has independent in-

crements, with separability, so it guarantees that

the time derivatives Ż(t), t ∈ T define a system

of continuously many independent random vari-

ables, as is expected.

Now we have to pay a price. Namely, Ż(t) is

no more ordinary random variable, but it is an

idealised random variable. Nevertheless, we are

happy to have continuously many independent

variables.

The Ż(t) is a generalised stochastic process.

Further, to have an analogue of the i.i.d. random

variables, we assume that increments of Z(t) in t is

stationary. Hence, the Ż(t) is a stationary idealised

process.

Definition 2.1. A stationary generalised stochastic

process Ż(t) is called a noise.

We now discuss realisations of Ż(t), that is, to

see the possible kinds of such systems. Appealing

to P Lévy’s idea, we approximate the noise by a

sequence of i.i.d. random variables.

To fix the idea, we consider the time parameter

running through I = [0, 1]. For every n take the

division [k/2n, (k+ 1)/2n], 0 ≤ k ≤ 2n − 1. With each

subinterval, we associate i.i.d. random variables

Xn
k
.

There are three cases. The first two are

extremal in the respective ways and are time-

dependent. The third one is, as it were a by-

product, space-dependent.
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i) Assume that each random variable has finite

3rd order moment with mean 0 and variance

2−n. Then, the sum Sn =
∑2n

1 Xn
k

converges in

law to a standard Gaussian random variable as

n → ∞ by the central limit theorem. Also, the

law of any consecutive partial sum tends to a

Gaussian distribution with variance proportional

to the length of the subinterval of I.

Such observations tell us that the probability

distribution of a Brownian motion as well as that

of white noise can be approximated in a quite

natural manner. This is true since the conclusion

does not depend on the choice of the probability

distributions of the Xn
k
.

Thus, we can say that a Brownian motion or a

white noise always appears regardless the choice

of distribution of Xn
k
, so far as we use the trick

used above. Note that all the Gaussian distribu-

tions are of the same type in distribution. We may

therefore say that Gaussian noise is extremal or

sitting on top of approximations.

ii) There is another extremal one, sitting not on

top, but bottom. It is the Poisson noise.

The setting is the same as above. The proba-

bility distribution of Xn
k

is chosen so as to be most

simple in the sense of probability distribution.

Namely, each Xn
k

takes only two values, say, 1

and 0 with probability pn and 1− pn, respectively.

This choice is most simple in the sense of the

factorisation of distributions. A technical choice

is that pn = 2−nλ with some positive constant λ.

Then, by the law of small probability, we obtain

a Poisson distribution. We can see the similar

results for partial sums and obtain a Poisson

process P(t, λ) with intensity λ. Also we have a

Poisson noise Ṗ(t, λ).

Obviously, this is another extremal case, com-

ing from the choice of the distribution of Xn
k
.

iii) It is noted that the choice of λ in ii) is

quite arbitrary so far as it is positive. It is, in fact,

the expectation of the P(1, λ) = P(λ), where λ is

viewed as a space variable.

Now one may ask if there exists a noise de-

pending on the space variable λ. The answer is

yes.

Theorem 2.2. There is a noise depending on the space

variable λ.

The idea of the proof is as follows. We have

established the exact form of Poisson noise Ṗ(t, λ)

which is viewed as a generalised stochastic pro-

cess with independent values at every t. With the

similar method to ii) and noting the relationship

between t and λ (like a duality), we can form

space noise denoted by P′(λ). It defines a Poisson

type distribution.

Discussions made in i), ii) and iii) are useful

in decomposition theory of a Lévy process.

3. Generalised Functionals of

White Noise

To fix the idea we take, hereafter, a Gaussian noise

which is realised by the time derivative Ḃ(t) of a

Brownian motion B(t), t ∈ R1.

The probability distribution µ of Ḃ is given on

a space of E∗ of generalised functions; the dual

space of some nuclear space E. The characteristic

functional is

C(ξ) = e−
1
2
�ξ�2 , ξ ∈ E.

There are two ways to define: one is based

on polynomials in Ḃ(t)’s, and the other is an

infinite dimensional analogue of the Schwartz

distribution.

1) First, we have to give a definite position

to Ḃ(t) in a certain space H(−1)
1 , where the system

{Ḃ(t), t ∈ R1} is total.

For general cases, we must take higher degree

polynomials. Since there are continuously many

variables, so that general polynomials are of the

form
∫
· · ·

∫
F(u1, · · · , un) : Ḃ(u1)p1 · · · Ḃ(un)pn : (du)n,

where p =
∑

j pj is the degree of the polyno-

mial and : : means the renormalisation which

is done by using idealised Hermite polynomials

with variance parameter 1
dt . Their sums finally

span the space (L2)− of generalised white noise

functionals. The space is a reasonable extension

of the space (L2) involving ordinary white noise

functionals with finite variance.

2) This is an infinite dimensional analogue of

the Schwartz space S over R1. Namely, we use the

differential operator

D = −
d2

du2
+ u2

+ 1

and apply the second quantisation method to

have the space (S) and its dual space (S)∗ which

is also called the space of generalised white

noise functionals. A significant property is that
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there is a characterisation of a member in (S)∗

(Pothoff–Streit).

The S-transform of generalised functional ϕ(x),

x being a sample function of Ḃ, is defined by

(Sϕ)(ξ) = C(ξ)

∫

E∗
e<x,ξ>ϕ(x)dµ(x).

Let F be the image of (L2)− under S-transform.

We can carry on the analysis smoothly on the

space F in place of (L2)− (or (S)∗). Useful gen-

eralised white noise functionals are often trans-

formed by S to ordinary functionals of ξ.

There are similar advantages for the differen-

tial operators. ∂t =
∂

∂Ḃ(t)
can be transformed to the

Fréchet derivative acting on F. With such helps

we can carry on the differential calculus on the

space of white noise functionals.

4. Infinite Dimensional Rotation Group

The finite dimensional standard Gaussian distri-

bution is invariant under the rotations around the

origin. Such an invariance holds for the white

noise measure. A rigorous and convenient defini-

tion of the rotations of a nuclear space E, a dense

subspace of L2(R1), is given as follows.

Definition 4.1. A continuous linear transformation

g acting on E is a rotation of E if the L2(R1)-norm is

kept invariant:

�gξ� = �ξ�, ξ ∈ E.

The collection of rotations forms a group under

the ordinary multiplication. The group is denoted

by O(E) and is called the rotation group of E. It

is topologised under the compact-open topology.

The adjoint g∗ of g ∈ O(E) is defined and the

collection of the g∗’s forms a group denoted by

O∗(E∗). It is isomorphic to O(E). We can define

the operator Ug by

(Ugϕ)(x) = ϕ(g∗x).

Theorem 4.2. For any g ∈ O(E), the g∗ is a measur-

able transformation on the white noise space (E∗, µ),

and Ug is a unitary operator acting on (L2).

Proof comes from the fact that the characteristic

functional C(ξ) of µ is invariant under g ∈ O(E).

With these observations we understand that

the rotation group provides a characterisation of

white noise measure.

Coming to probability theory, we are inter-

ested in the roles of the group O(E) in the study

of the analysis of white noise functionals, indeed

a harmonic analysis arising from O(E). There are

subgroups Gn (of O(E)) isomorphic to SO(n) and

they play the similar roles to the finite dimen-

sional case.

To be more interesting, we can see one-

parameter subgroups that come from diffeomor-

phisms of the parameter space. The simplest and

most important subgroup is the one that comes

from the time shift. It defines the flow of Brow-

nian motion. It is a good problem to find other

one-parameter subgroups describing significant

probabilistic properties.

5. Cooperating Fields

There are many cooperating fields not only in

mathematics but widely in science and other

fields that cooperate with white noise theory.

They are not simply applications, but propose in-

teresting problems to be developed in connection

with white noise theory. Some examples are in

order.

1) Feynman path integrals. In quantum dy-

namics we consider possible trajectories around

the classical path that is determined by La-

grangian. We propose to take a Brownian bridge

to express the difference between the classical

trajectory and other fluctuating paths. Thus the

action integral is a function of white noise, since

the velocity is expressed as a function of the time

derivative of the Brownian bridge.

Thus the computation of the propagator fol-

lowing Feynman’s suggestion turns out to be a

white noise calculus. Needless to say, good results

have been obtained in the cases where various

potentials are given.

2) In statistical mechanics we meet various

equations to describe physical phenomena. Some

are viewed as nonlinear generalisations of the

Langevin equation. There we meet equations in-

volving a noise explicitly. To obtain the explicit

solution to the equation we are led to profound

analysis of white noise functionals. Since the noise

involved there may not be a simple white noise,

mathematical theory from wider viewpoints is

requested.

3) Molecular biology. We do not wait until ob-

served data with fluctuation. Giving white noise
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input to an unknown mechanism like biological

organ. Observing the output to see biological

functions of the system in question. By using

white noise calculus we identify the biological

function, where one-parameter subgroup of O(E)

is a good tool.

4) We have a characterisation of (S)∗-

functionals. Once we have a data expressed

as a sample function of a stochastic process, we

can find if its source is a white noise. We have

good examples not yet solved.

5) There are problems in group representation

theory related to O(E).

Note. Similar discussions can be done for other

noises.
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