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Grothendieck’s thesis and subsequent publica-
tions in the early 1950’s dealt with functional
analysis. This was remarkable work, which is
attracting new attention today.a Still, his most
important contributions are in algebraic geometry,
a field which occupied him entirely from the late
1950’s on, in particular during the whole time he
was a professor at the Institut des Hautes Études
Scientifiques (IHÉS) (1959–1970).

Algebraic geometry studies objects defined by
polynomial equationsb and interprets them in a
geometric language. A major problem faced by
algebraic geometers was to define a good frame-
work and develop local to global techniques.
In the early 1950’s complex analytic geometry
showed the way with the use of sheaf theory.
Thus, a complex analytic space is a ringed space,
with its underlying space and sheaf of holomor-
phic functions (Oka, H Cartan). Coherent sheaves
of modules over this sheaf of rings play an impor-
tant role.c In 1954 Serre transposed this viewpoint
to algebraic geometry for varieties defined over
an algebraically closed field. He employed the
Zariski topology, a topology with few open sub-
sets, whose definition is entirely algebraic (with
no topology on the base field), but which is well
adapted, for example, to the description of a pro-
jective space as a union of affine spaces, and gives
rise to a cohomology theory which enabled him,
for example, to compare certain algebraic and
analytic invariants of complex projective varieties.

Inspired by this, Grothendieck introduced
schemes as ringed spaces obtained by gluing (for
the Zariski topology) spectra of general com-
mutative rings. Furthermore, he described these
objects from a functorial viewpoint. The language
of categories already existed, having appeared in
the framework of homological algebra, following
the publication of Cartan–Eilenberg’s book (Ho-
mological Algebra, Princeton Univ. Press, 1956). But

aSee [G Pisier, Grothendieck’s Theorem, Past and Present, Bull.
Amer. Math. Soc. (N.S.) 49(2) (2012) 237–323].
bHowever, we seldom saw Grothendieck write an explicit
equation on the blackboard; he did it only for basic, crucial
cases.
cCf. Cartan’s famous theorems A and B.

it was Grothendieck who showed all its wealth
and flexibility. Starting with a category C, to each
object X of C one can associate a contravariant func-
tor on C with values in the category of sets, hX :
C → Sets, sending the object T to HomC(T, X). By a
classical lemma of Yoneda, the functor X �→ hX is
fully faithful. To preserve the geometric language,
Grothendieck called hX(T) the set of points of X
with values in T. Thus, an object X is known when
we know its points with values in every object T.
Grothendieck applied this to algebraic geometry.
This was revolutionary as, until then, only field
valued points had been considered.

As an example, suppose we have a system of
equations

f1(x1, . . . , xn) = · · · = fN(x1, . . . , xn) = 0, (1)

where the fi’s are polynomials with coefficients in
Z. Let A be the opposite category of the category
of rings, and let F be the (contravariant) functor
sending a ring A to the set F(A) of solutions
(xi), xi ∈ A, of (1). This functor is nothing but the
functor hX for X the object of A corresponding to
the quotient of Z[x1, . . . , xn] by the ideal generated
by the fi’s: the functor F is represented by X, an
affine scheme. Points of X with values in C are
points of a complex algebraic variety — that one
can possibly study by analytic methods — while
points with values in Z, Q, or in a finite field
are solutions of a diophantine problem. Thus the
functor F relates arithmetic and geometry.

If the fi’s have coefficients in a ring B instead
of Z, the analogous functor F on the category A
opposite to that of B-algebras, sending a B-algebra
A to the set F(A) of solutions of (1) with values
in A, is similarly represented by the spectrum
X of a B-algebra (quotient of B[x1, . . . , xn] by the
ideal generated by the fi’s), a scheme over the
spectrum of B. In this way a relative viewpoint
appears, for which the language of schemes is
perfectly suited. The essential tool is base change,
a generalisation of the notion of extension of
scalars: given a scheme X over S and a base
change morphism S′ → S, we get a new scheme
X′ over S′, namely, the fiber product of X and S′
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over S. In particular, X defines a family of schemes
Xs parameterised by the points s of S. The above
functor F then becomes the functor sending a
S-scheme T to the set of S-morphisms from T to
X. A number of useful properties of X/S (such
as smoothness or properness) can nicely be read
on the functor hX. The two above mentioned
properties are stable under base change, as is
flatness, a property that plays a central role in
algebraic geometry, as Grothendieck showed. In
1968, thanks to M Artin’s approximation theorem,
it became possible to characterise functors that
are representable by algebraic spaces (objects very
close to schemes) by a list of properties of the
functor, each of them often being relatively easy
to check. But already in 1960, using only the
notion of flatness, Grothendieck had constructed,
in a very natural way, Hilbert and Picard schemes
as representing certain functors, at once super-
seding — by far — all that had been written on
the subject before.

Nilpotent elementsd in the local rings of
schemes appear naturally (for example in fiber
products), and they play a key role in questions
of infinitesimal deformations. Using them system-
atically, Grothendieck constructed a very general
differential calculus on schemes, encompassing
arithmetic and geometry.

In 1949 Weil formulated his conjectures on
varieties over finite fields. They suggested that
it would be desirable to have at one’s disposal
a cohomology with discrete coefficients satisfying
an analogue of the Lefschetz fixed point formula.
In classical algebraic topology, cohomology with
discrete coefficients, such as Z, is reached by cut-
ting a complicated object into elementary pieces,
such as simplices, and studying how they overlap.
In algebraic geometry, the Zariski topology is too
coarse to allow such a process. To bypass this
obstacle, Grothendieck created a conceptual rev-
olution in topology by presenting new notions of
gluing (a general theory of descent,e conceived al-
ready in 1959), giving rise to new spaces: sites and
topoi, defined by what we now call Grothendieck
topologies. A Grothendieck topology on a category
is the datum of a particular class of morphisms
and families of morphisms (Ui → U)i∈I, called

dAn element x of a ring is called nilpotent if there exists an
integer n ≥ 1 such that xn = 0.
eThe word “descent” had been introduced by Weil in the case
of Galois extensions.

covering, satisfying a small number of properties,
similar to those satisfied by open coverings in
topological spaces. The conceptual jump is that
the arrows Ui → U are not necessarily inclusions.f

Grothendieck developed the corresponding no-
tions of sheaf and cohomology. The basic example
is the étale topology.g A seminar run by M Artin
at Harvard in the spring of 1962 started its sys-
tematic study. Given a scheme X, the category to
be considered is that of étale maps U → X, and
covering families are families (Ui → U) such that
U is the union of the images of the U′i s. The defi-
nition of an étale morphism of schemes is purely
algebraic, but one should keep in mind that if X is
a complex algebraic variety, a morphism Y → X
is étale if and only if the morphism Yan → Xan

between the associated analytic spaces is a local
isomorphism. A finite Galois extension is another
typical example of an étale morphism.

For torsion coefficients, such as Z/nZ, one
obtains a good cohomology theory Hi(X, Z/nZ),
at least for n prime to the residue characteristics
of the local rings of X. Taking integers n of the
form �r for a fixed prime number �, and pass-
ing to the limit, one obtains cohomologies with
values in Z� = lim←−−Z/�rZ, and its fraction field
Q�. If X is a complex algebraic variety, one has
comparison isomorphisms (due to M Artin) be-
tween the étale cohomology groups Hi(X, Z/�rZ)
and the Betti cohomology groups Hi(Xan, Z/�rZ),h

thus providing a purely algebraic interpretation of
the latter. Now, if X is an algebraic variety over
an arbitrary field k (but of characteristic � �) (a
k-scheme of finite type in Grothendieck’s lan-
guage), k an algebraic closure of k, and Xk de-
duced from X by extension of scalars, the groups
Hi(Xk, Q�) are finite dimensional Q�-vector spaces,
and they are equipped with a continuous action of
the Galois group Gal(k/k). It is especially through
these representations that algebraic geometry in-
terests arithmeticians. When k is a finite field Fq, in
which case Gal(k/k) is generated by the Frobenius
substitution a �→ aq, the Weil conjectures, which
are now proven, give a lot of information about
these representations. Étale cohomology enabled
Grothendieck to prove the first three of these

fMore precisely, monomorphisms, in categorical language.
gThe choice of the word étale is due to Grothendieck.
hBut not between Hi(X, Z) and Hi(Xan, Z): by passing to
the limit one gets an isomorphism between Hi(X, Z�) and
Hi(Xan, Z) ⊗ Z�.

January 2015, Volume 5 No 12

Asia Pacific Mathematics Newsletter



3

conjectures in 1966.i The last and most difficult
one (the Riemann hypothesis for varieties over finite
fields) was established by Deligne in 1973.

When Grothendieck and his collaborators
(Artin, Verdier) began to study étale cohomology,
the case of curves and constant coefficients was
known: the interesting group is H1, which is es-
sentially controlled by the Jacobian of the curve. It
was a different story in higher dimension, already
for a surface, and a priori it was unclear how to
attack, for example, the question of the finiteness
of these cohomology groups (for a variety over
an algebraically closed field). But Grothendieck
showed that an apparently much more difficult
problem, namely a relative variant of the question,
for a morphism f : X → Y, could be solved simply,
by dévissage and reduction to the case of a family
of curves.j This method, which had already made
Grothendieck famous with his proof, in 1957, of
the Grothendieck–Riemann–Roch formula (although
the dévissage, in this case, was of a different
nature), suggested a new way of thinking, and
inspired generations of geometers.

In 1967 Grothendieck defined and studied a
more sophisticated, second type of topology, the
crystalline topology, whose corresponding coho-
mology theory generalises de Rham cohomology,
enabling one to analyse differential properties of
varieties over fields of characteristic p > 0 or
p-adic fields. The foundations were written up by
Berthelot in his thesis. Work of Serre, Tate, and
Grothendieck on p-divisible groups, and problems
concerning their relations with Dieudonné theory
and crystalline cohomology launched a whole
new line of research, which remains very active
today. Comparison theorems (solving conjectures
made by Fontainek) establish bridges between
étale cohomology with values in Qp of varieties
over p-adic fields (with the Galois action) on
the one hand, and their de Rham cohomology
(with certain extra structures) on the other hand,
thus providing a good understanding of these
p-adic representations. However, over global
fields, such as number fields, the expected prop-
erties of étale cohomology, hence of the associated

iThe first one (rationality of the zeta function) had already been
proved by Dwork in 1960, by methods of p-adic analysis.
jAt least for the similar problem concerning cohomology with
proper supports: the case of cohomology with arbitrary supports
was treated only later by Deligne using other dévissages.
kThe so-called Ccris, Cst, and CdR conjectures, first proved in
full generality by Tsuji in 1997, and to which many authors
contributed.

Galois representations, are still largely conjectural.
In this field, the progress made since 1970 owes
much to the theory of automorphic forms (the
Langlands programme), a field that Grothendieck
never considered.

In the mid 1960’s Grothendieck dreamed of
a universal cohomology for algebraic varieties,
without particular coefficients, having realisa-
tions, by appropriate functors, in the cohomolo-
gies mentioned above: the theory of motives. He
gave a construction, from algebraic varieties and
algebraic correspondences between them, relying
on a number of conjectures that he called stan-
dard. Except for one of them,l they are still open.
Nevertheless, the dream was a fruitful source of
inspiration, as can be seen from Deligne’s theory
of absolute Hodge cycles, and the construction by
Voevodsky of a triangulated category of mixed
motives. This construction enabled him to prove
a conjecture of Bloch–Kato on Milnor K-groups,
and paved the way to the proof, by Brown, of the
Deligne–Hoffman conjecture on values of multi-
zeta functions.

The above is far from giving a full ac-
count of Grothendieck’s contributions to alge-
braic geometry. We did not discuss Riemann–
Roch and K-theory groups, stacks and gerbes,m

group schemes (SGA 3), derived categories and
the formalism of six operations,n the tannakian
viewpoint, unifying Galois groups and Poincaré
groups, or anabelian geometry, which he developed
in the late 1970’s.

All major advances in arithmetic geometry
during the past forty years (proof of the Rie-
mann hypothesis over finite fields (Deligne), of
the Mordell conjecture (Faltings), of the Shimura–
Taniyama–Weil conjecture (Taylor–Wiles), works
of Drinfeld, L Lafforgue, Ngô) rely on the founda-
tions constructed by Grothendieck in the 1960’s.
He was a visionary and a builder. He thought
that mathematics, properly understood, should
arise from “natural” constructions. He gave many
examples where obstacles disappeared, as if

lThe hard Lefschetz conjecture, proved by Deligne in 1974.
mThese objects had been introduced by Grothendieck to
provide an adequate framework for non abelian coho-
mology, developed by J Giraud (Cohomologie non abélienne,
Die Grundlehren der mathematischen Wissenschaften 179,
Springer-Verlag, 1971). Endowed with suitable algebraic struc-
tures (Deligne–Mumford, Artin), stacks have become efficient
tools in a lot of problems in geometry and representation
theory.
nCurrently used today in the theory of linear partial differen-
tial equations.
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Alexander Grothendieck at the IHÉS in 1960’s during his famous Seminar of Algebraic Geometry. [Photo courtesy IHÉS]

by magic, because of his introduction of the right
concept at the right place. If during the last
decades of his life he chose to live in extreme
isolation, we must remember that, on the contrary,
between 1957 and 1970, he devoted enormous
energy to explaining and popularising, quite suc-
cessfully, his point of view.

****************

Grothendieck’s three major works in algebraic
geometry are:

ÉGA: Éléments de géométrie algébrique, rédigés
avec la collaboration de J. Dieudonné, Pub. Math.
IHÉS 4, 8, 11, 17, 20, 24, 28 et 32.

FGA: Fondements de la géométrie algébrique, Ex-
traits du Séminaire Bourbaki, 1957–1962, Paris,
Secrétariat mathématique, 1962.

SGA: Séminaire de Géométrie Algébrique du Bois-
Marie, SGA 1, 3, 4, 5, 6, 7, Lecture Notes in
Math. 151, 152, 153, 224, 225, 269, 270, 288, 305,
340, 589, Springer-Verlag; SGA 2, North Holland,
1968.
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