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1. Introduction to Topology and Knot

Theory

Here we treat plane figures and solid figures as

topological spaces. A plane figure is a subset of

the 2-dimensional Euclidean space R2 and a solid

figure is a subset of the 3-dimensional Euclidean

space R3. In general, a figure is a subset of the n-

dimensional Euclidean space Rn for some natural

number n.

Two figures X and Y are homeomorphic if there

exists a continuous bijection f : X → Y such that

the inverse map f−1 : Y → X is also continuous.

Then we denote it by X � Y. Such a map f is said

to be a homeomorphism from X to Y.
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Fig. 1.1

For example, we consider the 26 alphabet cap-

ital letters as plane figures. Here we think that

each of them is a finite union of line segments and

curves. Namely they are 1-dimensional and have

no areas. Then they are classified up to home-

omorphism as illustrated in Fig. 1.1. In Fig. 1.1,

a real line rectangle describes a homeomorphism

class and a dotted line rectangle describes a ho-

motopy equivalence class. Here we omit the def-

inition of homotopy equivalence. But we note

here that the homotopy equivalence classification

of these 26 letters is in one to one correspon-

dence with the homeomorphism classification of

26 boldface alphabet capital letters as illustrated

in Fig. 1.2. Here each boldface letter is a regular

neighbourhood of the corresponding letter and is
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Fig. 1.2

a compact planar surface with boundary. They are

completely classified by the Euler characteristic or

the first Betti number.

For figures in the same n-dimensional Eu-

clidean space Rn, there is an equivalence relation

that is stronger than the homeomorphism. Let X

and Y be subsets of Rn. We say that X and Y

are ambient isotopic if there exists an orientation

preserving homeomorphism f : Rn
→ R

n such that

f (X) = Y. Then we denote it by X ≈ Y.

Two mutually homeomorphic plane figures

that are not mutually ambient isotopic in R2 are

illustrated in Fig. 1.3. Note that if we think them

as solid figures, then they are ambient isotopic

in R3.
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Fig. 1.3

A knot is a simple closed curve in R3. Knot

theory studies whether or not two given knots

are ambient isotopic in R3. By definition, any two

knots are mutually homeomorphic. Two mutually

non-ambient isotopic knots, 01 and 31, are illus-

trated in Fig. 1.4.
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Fig. 1.4
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2. Topology of Puzzle Rings

There are many studies on puzzle rings. However

it seems to me that not so many studies on them

from topological viewpoint are done yet. Here

we consider a puzzle ring with hard part and soft

part. A hard part is rigid and made of metal for

example. A soft part is pliable and made of string

for example. This can be formulated as follows.

Let Xi = Hi ∪ Si be a subset of R3 with Hi ∩ Si = ∅

for i = 1, 2. We say that X1 and X2 are equivalent

if there exist an orientation preserving isometry

f : R3
→ R

3 with f (H1) = H2 and an orientation

preserving homeomorphism g : R3
→ R

3 that is

pointwisely fixed on H2 such that g(f (S1)) = S2.

Below we consider the case that X = H ∪ S is a

finite graph embedded in R3. Then we can apply

spatial graph theory to puzzle ring problem. Now

we consider the following problem. From now

on we do not stick to using only mathematically

defined terminologies.

Problem 1. In Fig. 2.1, remove the soft part from

the hard part.

Fig. 2.1

To be more mathematical, we reformulate the

problem as follows. The dotted line in Fig. 2.1 is

an imaginary line.

Problem 2. How many times does the soft part

need to go across the dotted line to be away from

the hard part as illustrated in Fig. 2.1?

Note that Problem 2 can be graded as illus-

trated in Fig. 2.2.

Fig. 2.2

The answer for level n is 2n. In particular

the answer for Problem 2 is 23
= 8. An actual

deformation that shows 8 is sufficient is illustrated

in Fig. 2.3.

However it will be unclear that the answer is

2n in general. Here we think the situation fully

topologically. Namely we suppose that the hard

part is also soft. Then we have a deformation

as illustrated in Fig. 2.4. It is clear by the final

illustration in Fig. 2.4 that the soft part bounds a

disk that intersects the dotted line transversally at

8 points. This fact is common for all illustrations

in Fig. 2.4 if we allow the disk to be topologi-

cal. Then we can shrink the soft part along the

topological disk. Then the soft part will become

sufficiently small and away from the hard part

after going across the dotted line 8 times.

It will be easy to image the solution for level

n from this solution for n = 3.

Fig. 2.3

Fig. 2.4

It is necessary to show that 2n is necessary.

It is shown in [1] by group theoretic argument.
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Recently the author found a geometric proof us-

ing covering space theory. It may be essentially

the same but at least for the author it is very

understandable. It will appear in [2] together with

certain generalisations.

A way to make a puzzle ring with hard part

and soft part is illustrated in Fig. 2.5. In such a

way we can produce a variety of puzzle rings

Fig. 2.5

with hard part and soft part as illustrated in

Fig. 2.6.

Fig. 2.6

References

[1] J. Przytycki and A. Sikora, Topological insights
from the Chinese rings, Proc. Amer. Math. Soc. 130(3)
(2002) 893–902.

[2] K. Taniyama, Site-specific Gordian distances of spa-
tial graphs, in preparation.

Kouki Taniyama has been a professor in mathematics at Waseda University 
since 2004. He received a PhD from Waseda University in 1992. He has 
held positions at Tokyo Woman’s Christian University and has been a trus-
tee of the Mathematical Olympiad Foundation of Japan since 2012. He 
received a Takebe Prize from MSJ in 1997 for his work in knot theory and 
spatial graph theory.

Kouki Taniyama
Waseda University, Japan
taniyama@waseda.jp

Translated from Sugaku Tushin, Vol. 18 (4) (2013)

January 2015, Volume 5 No 18

Asia Pacific Mathematics Newsletter


