
Abstract. We give a brief historical overview of the fa-
mous Pythagoras theorem and Pythagoras. We present
a simple proof of the result and discuss one direction
of extension which has resulted in a famous result
in number theory. We follow [1], [4] and [5] for the
historical comments and sources.

1. Introduction

In mathematics, the Pythagoras theorem is a
famous result in triangle geometry. Although
there are many variants of this result in various
branches of mathematics, we shall restrict our-
selves to the following simple version that was
originally given by Pythagoras.

Theorem 1.1 (Pythagoras). The square of the hy-
potenuse (the side opposite the right angle) is equal to
the sum of the squares of the other two sides.

Thus if a denotes the hypotenuse of the right
angled triangle and b and c denotes the other two
sides, then the theroem says that a2

= b2
+ c2.

Triples like (a, b, c) which satisfy this theorem are
known as Pythagorean triples. It is an easy exercise
to show that there are infinitely many such triples
of numbers. Indeed if (a, b, c) is an example, then
(ka, kb, kc) is also an example for any positive
integer k.

Before proceeding to give a proof of Theo-
rem 1.1, we shall give a brief historical overview
of the theorem and Pythagoras.

This theorem is named after the Greek mathe-
matician Pythagoras (ca. 570 BC–ca. 495 BC), who
by tradition is credited with its proof, although
it is often argued that knowledge of the theo-
rem predates him. There is evidence that Baby-
lonian mathematicians understood the formula,
although there is little surviving evidence that
they used it in a mathematical framework.

Pythagoras of Samos is often described as
the first pure mathematician. He was an ex-
tremely important figure in the development of
mathematics yet we know relatively little about
his mathematical achievements. Unlike for many
later Greek mathematicians, where we have at
least some of the books which they wrote, we

have nothing of Pythagoras’s writings. The soci-
ety which he led, half religious and half scientific,
followed a code of secrecy which certainly means
that today Pythagoras is a mysterious figure.
Whatever we know about Pythagoras is through
the writings of other Greek contemporaries and
later philosophers and mathematicians. Pythago-
ras is considered to be the founder of a group
called the Pythagorean brotherhood. In fact it is
believed that Pythagoras was the first person to
use the word mathematics.

Pythagoras of Samos

Apart from being an accomplished philoso-
pher and mathematician, Pythagoras also dealt
with music and notes. Pythagoras is believed to
be the first person who systematically studied
the musical notes and hence is said to be the
father of music. Many of the results and teach-
ings that Pythagoras is attributed with may have
been discovered by his pupils and followers. It is
believed that whatever the Pythagorean brotherhood
or the Pythagoreans discovered, they gave credit to
their master. Thus, it is matter of debate whether
we must really allow so many discoveries to be
credited with Pythagoras. Nonetheless, he stands
as an important figure in the history of mathe-
matics and his works and teachings have had an
enormous amount of influence on the way Greek
mathematics developed.
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2. History of Theorem 1.1

The most famous result in mathematics is per-
haps the Pythagoras theorem. Every high school
student if asked to state one mathematical result
correctly, would invariably choose this theorem.
However there is a considerable debate whether
the Pythagorean theorem was discovered once, or
many times in many places.

The history of the theorem can be divided
into four parts: knowledge of Pythagorean triples,
knowledge of the relationship among the sides of
a right triangle, knowledge of the relationships
among adjacent angles, and proofs of the theorem
within some deductive system.

Bartel Leendert van der Waerden (1903–1996)
conjectured that Pythagorean triples were dis-
covered algebraically by the Babylonians. Written
between 2000 and 1786 BC, the Middle Kingdom
Egyptian papyrus Berlin 6619 includes a problem
whose solution is the Pythagorean triple 6:8:10,
but the problem does not mention a triangle. The
Mesopotamian tablet Plimpton 322, written be-
tween 1790 and 1750 BC during the reign of Ham-
murabi the Great, contains many entries closely
related to Pythagorean triples.

In India, the Baudhayana Sulba Sutra, the dates
of which are given variously as between the 8th
century BC and the 2nd century BC, contains a list
of Pythagorean triples discovered algebraically,
a statement of the Pythagorean theorem, and a
geometrical proof of the Pythagorean theorem for
an isosceles right triangle. The Apastamba Sulba
Sutra (ca. 600 BC) contains a numerical proof of
the general Pythagorean theorem, using an area
computation. Van der Waerden believed that “it
was certainly based on earlier traditions”. Boyer
(1991) thinks the elements found in the ulba-stram
may be of Mesopotamian derivation.

With contents known much earlier, but in sur-
viving texts dating from roughly the first cen-
tury BC, the Chinese text Zhou Bi Suan Jing
(The Arithmetical Classic of the Gnomon and
the Circular Paths of Heaven) gives a reasoning
for the Pythagorean theorem for the (3, 4, 5)
triangle. In China it is called the Gougu Theo-
rem. During the Han Dynasty (202 BC–220 AD),
Pythagorean triples appear in The Nine Chapters
on the Mathematical Art, together with a mention
of right triangles. Some believe the theorem arose
first in China, where it is alternatively known

as the Shang Gao Theorem, named after the Duke
of Zhou’s astronomer and mathematician, whose
reasoning composed most of what was in the
Zhou Bi Suan Jing.

Pythagoras, whose dates are commonly given
as 570–495 BC, used algebraic methods to con-
struct Pythagorean triples, according to Proclus’s
commentary on Euclid. Proclus, however, wrote
between 410 and 485 AD. According to Sir
Thomas L Heath (1861–1940), no specific attribu-
tion of the theorem to Pythagoras exists in the
surviving Greek literature from the five centuries
after Pythagoras lived. However, when authors
such as Plutarch and Cicero attributed the the-
orem to Pythagoras, they did so in a way which
suggests that the attribution was widely known
and undoubted. Whether this formula is rightly
attributed to Pythagoras personally or not, one
can safely assume that it belongs to the very old-
est period of Pythagorean mathematics. In fact, it
is believed that Pythagoras travelled widely, and
he may have actually learned about the theorem
from the Babylonians.

Around 400 BC, according to Proclus, Plato
gave a method for finding Pythagorean triples
that combined algebra and geometry. Around
300 BC, in Euclid’s Elements, the oldest extant
axiomatic proof of the theorem is presented.

3. Proof of Theorem 1.1

The Pythagoras theorem is perhaps the most
proved mathematical result with hundreds of
known proofs. [2] contains a collection of almost
100 different proofs. The oldest dating back to
the days of Euclid and the newest from the 21st
century. The proofs are all varied, some of them
are geometrical, some of them are algebraic, and
in fact there are some which use principles of
physics and differential calculus to prove this
result. Below we present one way to prove the
theorem.

Proof. We take four copies of a right triangle with
sides a, b and c, arranged inside a square with side
c as shown in the figure below. This will leave a
square with side (b−a) in the middle empty, while
all the triangles will be similar with area d = 1

2 ab.
The area of the large square is therefore (b −

a)2
+

4
2 ab = a2

+ b2. This in turn is equal to c2, since
the square is of side length c. �
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mathematician wrote in the margin of his copy of
Bachet’s edition of the works of Diophantus,

It is impossible to separate a cube into
two cubes, or a biquadrate into two
biquadrates, or in general any power
higher than the second into powers of
like degree; I have discovered a truly
marvellous proof, which this margin is
too small to contain.

This is the celebrated Fermat’s Last Theorem,
which in modern language translates to,

Theorem 4.3. If n is any natural number greater than
2, the equation

Xn
+ Yn

= Zn

has no solutions in integers, all different from 0.

Whatever marvellous proof Fermat had for
his theorem nobody found out because in all
of Fermat’s letters to other mathematicians he
never mentioned it. His theorem gathered much
publicity after his death and remained the most
prized unsolved problem of mathematics for more
than three centuries. Euler, the legendary Swiss
mathematician proved the theorem for n = 3,
Fermat himself solved the problem for n = 4 by
using his famous method of infinite descent and
this was followed by Sophie Germain with her
proof of the theorem for relatively small primes.
The case when n = 5 was proved with the ef-
forts of Dirichlet and Legendre. Dirichlet further
proved the theorem for n = 14. After this the
mathematician Lamé disposed off with the case
n = 7. This was then followed by Kummer’s mar-
vellous achievement, where he proved the result
for many values. A brief survey of this result can
be found in [3]. This result was finally proved
in 1994 by Andrew Wiles, following the works
of many mathematicians like A Weil, K A Ribet,
G Y Taniyama, G Shimura, B Mazur, G Frey and
R Taylor.

Thus, we see how a simple result like The-
orem 1.1 has given rise to so much beautiful
mathematics which has culminated in Theorem
4.3. This is really the hallmark of a good result.
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4. Extensions of Theorem 1.1

A good theorem is the one which inspires other
good results. In that sense, the Pythagoras the-
orem has been a precursor of many wonderful
mathematical ideas. The Pythagoras theorem can
be extended to many different areas of mathe-
matics, including but not limited to inner prod-
uct spaces, non-Euclidean geometry, trigonome-
try, etc. Here we just mention one such aspect
of how the Pythagoras theorem has given rise to
mathematics in other areas.

A Pythagorean triple (a, b, c) is called primi-
tive if gcd (a, b, c) = 1. The following fact about
primitive Pythagorean triple was found in the
clay tablet Plimpton 322 (1900–1600 BC) of the
Bablylonians.

Theorem 4.1. Suppose u and v are relatively prime
positive integers, assume that not both are odd and that
u > v. Then, if a = 2uv, b = u2 − v2 and c = u2

+ v2,
we have gcd (a, b, c) = 1 and a2

+ b2
= c2.

In fact, the converse of this result is also true.
The earliest record of this work is found in the
famous book of Diophantus, Arithmetica (250 AD).
This brings us to one of the most famous result in
number theory called the Fermat’s Last Theorem.
A standard restatement is,

Theorem 4.2 (Fermat’s Last Theorem). There are
no solutions to the following equation with (X, Y, Z)
integers

Xp
+ Yp

+ Zp
= 0

where XYZ � 0 and p ≥ 3 is a prime.

Sometime in the middle of the 17th century
Pierre de Fermat (1601–1655), an amateur French
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