
Abstract. There are many methods available to ob-
tain Pythagorean triples (PT). The general observation
shows that most of them do not produce all the Prim-
itive Pythagorean Triples (PPT) or they produce all tri-
ples but with repetition. This paper highlights a struc-
tured approach to finding all PPTs and subsequently all
triples, such that there is no repetition in the triples. In
the process, an interesting relation between the sum of
lengths of the legs of a primitive right triangle with
prime numbers is established. Later, a Fundamental
Theorem of Primitive Pythagorean Primes (PPP) is con-
jectured, which is in many ways similar to the Funda-
mental Theorem of Arithmetic, along with interesting
propositions on PPPs derived from r=1 condition.

1. Introduction

A PT [1] is a set of a, b, c ∈ Z+ such that a2
+ b2
=

c2. A PT is called a PPT, if a, b, c are relatively
prime. The most general formula to compute PTs,
the Euclid’s method, states that, ∀m, n, k ∈ Z+ and
m > n, (a, b, c) forms a PT, where a = k(m2 − n2),
b = kmn, c = k(m2

+n2). But this method duplicates
the PTs, as we could see for k = 1, m = 9, n = 3,
k = 9, m = 3, n = 1 and k = 18, m = 2, n = 1,
the PTs generated are (72, 54, 90), (54, 72, 90) and
(54, 72, 90) respectively.

Only a few algorithms exist to find all the
PPTs and PTs without repetition. The first to show
this was F J M Barning [2], who developed three
matrices, such that when any of the three matrices
is multiplied on the right by a column matrix
such that the elements of the matrix form a PT,
then the result is another column matrix whose
elements are a different PT. If the initial input
is a PPT, then the result is also a PPT. Thus
each PPT could generate three PPTs. All PPTs are
produced this way from the PPT (3, 4, 5), and no
PPT appears more than once. A different tree was
found by Price [3] which again uses three matrices
to produce triples.

There are a few other methods to produce
all PPTs, like the method which uses Euclid’s
formula for generating all PPTS [4] and Mitchell’s
formula [5] which makes use of two parameters

to generate the tree of triples. The results ob-
tained from these methods become identical to the
tree produced from Barning’s method. William
J Spezeski [6] recently presented a method
which generates all triples exactly twice without
repetition.

Though the methods used in obtaining ternary
trees generate all the PPTs and also without repe-
tition, but the fate of obtaining a PPT, depends on
another PPT. i.e. we cannot obtain an individual
PPT (referred to as spigot PPT). The formula dis-
cussed below is capable of generating all the PPTs
individually without repetition based on integer
parameters. Also, the classification of PPTs, as per
the PPT table, allows us to explore and study
wide range of properties adhered to PPTs. There
are several analytical and numerical methods [11]
for estimating prime numbers. Veracity and elo-
quence of such concepts and proofs motivated the
work documented in this paper.

2. A Structured Approach

An approach in the area of PTs shows that
all the primitive triples without repetition can
be found by the relation between the even leg
and the hypotenuse. Hence a formula has been
devised based on the following PPT table and
observations.

Throughout the paper, let us assume that ∀
PPTs [a, b, c], a = odd leg, b = even leg, c =
hypotenuse (Fig. 1).

Fig. 1. Right angled triangle.
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Theorem 2.1. The difference in lengths of hypotenuse
and the even leg in a PPT should always be equal to
(odd number)2.

Proof. Let l = (2k − 1) be an odd number ∀ k ∈ Z+

⇒ c − b = l

⇒
√

a2 + b2 − b = l

⇒
√

a2 + b2 = b + l

squaring,
a2
+ b2
= b2
+ 2bl + l2

⇒ a2
= l(2b + l)

⇒ a =
√

l(2b + l)

since LHS ∈ Z+, RHS ∈ Z+

⇒
√

l
√

2b + l ∈ Z+

⇒
√

l ∈ Z+

and
√

2b + l ∈ Z+

⇒ l = j2

where, j is an odd number. In other words,
l = (2k − 1)2, so that l is the square of an odd
number.

Based on Theorem 1, the PPTs were classified
and the following PPT table was obtained.

2.1. PPT table

r = 1 r = 2 r = 3 r = 4 r = 5
s = 1 (3,4,5) (15,8,17) (35,12,37) (63,16,65) (99,20,101)
s = 2 (5,12,13) (21,20,29) (45,28,53) (77,36,85) (117,44,125)
s = 3 (7,24,25) (27,36,45) (55,48,73) (91,60,109) (135,72,153)
s = 4 (9,40,41) (33,56,65) (65,72,97) (105,88,137) (153,104,185)
s = 5 (11,60,61) (39,80,89) (75,100,125) (119,120,169) (171,140,221)
s = 6 (13,84,85) (45,108,117) (85,132,157) (133,156,205) (189,180,261)
s = 7 (15,92,93) (51,140,149) (95,168,193) (147,196,245) (207,224,305)

2.2. Derivation

In order to obtain a general formula to represent
all PPTs, let us first obtain a representation for a,
the odd leg.

Let ar,s denote the odd leg corresponding to
column r and row s of the PPT table. Consider
the first row of the PPT table.

Let 3, 15, 35, 63, 99 . . . be denoted by a series Sr,1

as:

Sr,1 = 3 + 15 + 35 + 63 + 99 + . . . ar,1.

Now,

Sr,1 = 3 + 15 + 35 + 63 + 99 + . . . ar,1 (1)

Sr,1 = 3+15+35+63+99+ . . . ar,1. (2)

(1)–(2)

⇒ 0 = 3 + 12 + 20 + 28 + 36 + . . . (ar,1 − ar−1,1) − ar,1

⇒ ar,1 = 3 + 4(3 + 5 + 7 + 9 + . . . (2r − 1))

⇒ ar,1 = 3 + 4(1 + 3 + 5 + 7 + 9 + . . . (2r − 1) − 1)

⇒ ar,1 = 3 + 4(r2 − 1). (3)

As we traverse down any column, we can find
that ar,s = ar,s−1 + τ, where ar,s ∈ row s, ar,s−1 ∈ row
s − 1 of the prescribed column and τ, the constant
difference between them. Clearly,

ar,s = ar,1 + (s − 1)τ. (4)

Also τ = 2(2r−1), which can be obtained by solving
the series 2, 6, 10, 14 . . . for the rth term. Therefore
from (3) and (4) choose, a = 4r2−1+2(2r−1)(s−1).

Theorem 2.2. ∀ s ∈ multiples of prime factors
of (2r − 1), the PTs obtained at s have a high-
est common factor which is the square of the
prime factor whose multiple is taken by s. i.e.
Let 2r − 1 = ω0

α0ω1
α1ω2

α2 · · ·ωk
αk · · ·ωn

αn be the
prime factorization of 2r − 1. If s = mωk, m ∈

Z+ then at s, the highest common factor of PT
(a, b, c) = ωk

2.

Proof. We know that,

a = 4r2 − 1 + 2(2r − 1)(s − 1).

When s = mωk,

a = 4r2 − 1 + 2(2r − 1)(mωk − 1)

= (2r − 1)(2r + 1) + 2(2r − 1)(mωk − 1)
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= (2r − 1)[(2r + 1) + 2mωk − 2]

= (2r − 1)[(2r − 1) + 2mωk]

= (ω0
α0ω1

α1ω2
α2 · · ·ωk

αk · · ·ωn
αn )

× [ω0
α0ω1

α1ω2
α2 · · ·ωk

αk · · ·ωn
αn + 2mωk]

= ωk
2(ω0

α0ω1
α1ω2

α2 · · ·ωk
αk−1 · · ·ωn

αn )

× [ω0
α0ω1

α1ω2
α2 · · ·ωk

αk−1 · · ·ωn
αn + 2m]

⇒ a = ωk
2
β

where, β = (ω0
α0ω1

α1ω2
α2 · · · ωk

αk−1 · · · ωn
αn ) ×

[ω0
α0ω1

α1ω2
α2 · · ·ωk

αk−1 · · ·ωn
αn + 2m]. Similarly, b

and c also will have a common factor ωk
2.

Note: When s = mωk
2
= qω2

k+θ, θ ∈ Z+, then clearly,
ω

2
k+θ is the highest factor of PT (a, b, c).

2.3. Observations

1. We could spot the appearance of non-
primitive PTs at some positions of the PPT
table. These positions correspond to the
value of s becoming equal to multiples of
prime factors of 2r − 1. By restricting s at
these values, we can obtain a PPT formula
and beyond reasonable doubt a PT formula,
which produces all PPTs and PTs without
repetition.

Based on the above theorems, derivations and
observations the formula is obtained.

3. Formula

∀, φ = 4r2 − 1 + 2(2r − 1)[s − 1]

where,
r ∈ Z+

s ∈ Z+− {multiples of prime factors of 2r − 1}.
The PPTs [a, b, c] are:[

φ,
φ

2 − (2r − 1)4

2(2r − 1)2 ,
φ

2
+ (2r − 1)4

2(2r − 1)2

]
.

All the possible PTs can be found out without
repetition by adding a multiplier to the above
formula like this: The PTs [a′, b′, c′] = m[a, b, c]
are:

m
[
φ,
φ

2 − (2r − 1)4

2(2r − 1)2 ,
φ

2
+ (2r − 1)4

2(2r − 1)2

]

where, m ∈ Z+.

Proof. By definition,

a2
+ b2
= c2

from Theorem 1, we know that c = b + (2r − 1)2

⇒ a2
+ b2
= b2
+ 2b(2r − 1)2

+ (2r − 1)4

⇒ a2
= 2b(2r − 1)2

+ (2r − 1)4

⇒ b =
a2 − (2r − 1)4

2(2r − 1)2

c = b + (2r − 1)2
=

a2
+ (2r − 1)4

2(2r − 1)2 .

Hence, replacing a by φ, the complete PPT is
found.

3.1. Other form

The other way of expressing the above formula is,
the PPTs [a, b, c] are:

[4r2−1+2(2r−1)(s−1), 2s(2r+s−1), 2s(2r+s−1)+(2r−1)2]

where,
r ∈ Z+

s ∈ Z+− {multiples of primefactors of (2r − 1)}.
The Pythagorean Triples [a′b′, c′] = m[a, b, c] are:

m[4r2 − 1 + 2(2r − 1)(s − 1), 2s(2r + s − 1),

2s(2r + s − 1) + (2r − 1)2]

where, m ∈ Z+.

3.2. Verification

To verify the correctness of the formula, the fol-
lowing examples are considered.

1. Example 1: r = 1, s = 1, m = 1 ⇐⇒ (3, 4, 5)
2. Example 2: r = 1, s = 1, m = 7 (multiplier) ⇐⇒

(21, 28, 35)
3. Example 3: r = 3, s = 4, m = 1 ⇐⇒ (65, 72, 97)
4. Example 4: r = 5, s = 3. Here, value of s is

invalid, s cannot be equal to 3. s must not be
equal to multiples of prime factors of (2r−1).
Here (2r − 1) = (2(5) − 1) = 9. Prime factors
of 9 is 3. Hence s in this case must not be
equal to 3 or multiples of 3.

5. Example 5: r = 12, s = 23, m = 4 (multiplier).
Here, value of s is invalid, s cannot be equal
to 23. S must not be equal to multiples of
prime factors of (2r − 1). Here (2r − 1) =
(2(12) − 1) = 23. Prime factors of 23 (prime
factor of a prime number is the number
itself) is 23. Hence s in this case must not
be equal to 23 or multiples of 23.

6. Example 6: r = 17, s = 29, m = 3 (multiplier)
⇐⇒ (3004, 3596, 4685).
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The new set of formulae produce all the PPTs and
of course all the PTs, without repetition. PPTs can
be used in cryptography as random sequences and
for the generation of keys. Also by including all
values for s, i.e. by making s ∈ Z+, we can obtain a
dynamically changing pattern/code for extremely
high security, apart from that, the triples are now
better classified/organized for study as can see
from the following properties.

4. Two Prime Entries

In any PPT one of the three entries must be even,
while the other two entries namely, hypotenuse
and the odd leg must be odd. Since the later
entries are odd, there is a chance that both the
entries could be prime numbers. Also it is conjec-
tured that there are infinitely many such instances
wherein both, the odd leg and the hypotenuse are
prime numbers [7]. By Schinzel and Sierpinski’s
Hypothesis H [8] we then expect to see infinitely
many triples with two prime entries.

Theorem 4.1. All the PPTs, wherein both, the odd
leg and the hypotenuse are prime numbers must fall
in the first column of the PPT table. i.e. If r = 1, then
∀ s ∈ Z+, we can find infinitely many two prime entries.
And it is impossible to find a two prime entry ∀ r � 1.

Proof. The PPTs ∀ r = 1, s ∈ Z+− {multiples of
prime factors of 2r − 1} are

[a, b, c] = (2s + 1, 2s(s + 1), 2s(s + 1) + 1).

The odd leg 2s + 1 may or may not be a prime
number.

The PPTs ∀ r ∈ Z+, s ∈ Z+− {multiples of
prime factors of 2r − 1} are:[

φ,
φ

2 − (2r − 1)4

2(2r − 1)2 ,
φ

2
+ (2r − 1)4

2(2r − 1)2

]

where,
φ = 4r2 − 1 + 2(2r − 1)[s − 1].

Here,
φ

2r − 1
= 2(r + s) − 1 ∈ Z+.

Hence, ∀ r � 1, there cannot be a two prime entry.

Theorem 4.2. All the PPTs, where a2
+ b2

= c2 and
b + c = a2, must lie in the first column of PPT table.

Proof. From the equations, a2
+ b2

= c2, b + c = a2,
we have (b + c)[1 + (b − c)] = 0. Since sides cannot
be negative, b � −c, so, c − b = 1. Hence, proved.

5. Primitive Hypotenuse Proposition

Proposition 5.1. Let t = 2r − 1, r ∈ Z+, then t is
prime, iff

∞∑
s=1

[t(2s + t) + 2s2] =
t−1∑
k=1

(ik)2

where, s, k ∈ Z+; i =
√
−1.

Proof. From 3.1, we know that any hypotenuse of
a PPT could be represented by the formula c =
2s(2r + s − 1) + (2r − 1)2, r, s ∈ Z+, s � multiples of
prime factors of 2r − 1. Clearly,

c = 2s(2r + s − 1) + (2r − 1)2

⇒ c = s2
+ s2
+ 2s(2r − 1) + (2r − 1)2

⇒ c = s2
+ [s + (2r − 1)]2.

Now consider t = 2r − 1 and cr =
∑∞

s=1 c, s �
multiples of prime factors of 2r − 1 where, cr

denotes the sum of all the Primitive hypotenuses
belonging to column r of the PPT table. For in-
stance, c1 = 12

+ (2)2
+ 22
+ (3)2

+ 32
+ (4)2

+ · · · and
c2 = 12

+ (4)2
+ 22

+ (5)2
+ 42

+ (7)2
+ · · · . Before

proceeding further, it is to be noted that if t is
prime, then t = ω0 (from Theorem 2) and if t is
composite, then ∃ω0, such that ω0 < t. When we
have t as a prime number, then

c = s2
+ [s + t]2

and

cr = 12
+ 22
+ 32
+ . . . ω

2
0 + (ω0 + 1)2

+ · · ·

+ (1 + t)2
+ (2 + t)2

+ (3 + t)2 + · · ·

⇒ cr = 12
+ 22
+ 32
+ . . . t2

+ (t + 1)2
+ · · ·

+ (1 + t)2
+ (2 + t)2

+ (3 + t)2 + · · ·

⇒ cr = 12
+ 22
+ 32
+ · · · + 12

+ 22
+ 32
+ · · ·

− (12
+ 22
+ 32
+ . . . t2) − (t2

+ (2t)2)

− ((2t)2
+ (3t)2) + · · ·

⇒ cr = 12
+ 22
+ 32
+ · · · + 12

+ 22
+ 32
+ · · ·

− (12
+ 22
+ 32
+ . . . t2)

− (t2
+ 2t2[−1 + 12

+ 22
+ 32
+ · · · ])

⇒ cr = 0 + · · · + 0 + · · · − (12
+ 22
+ 32
+ . . . t2)

− (t2
+ 2t2[−1 + 0]).

September 2015, Volume 5 No 212

Asia Pacific Mathematics Newsletter



Since, ζ( − 2) = 0, where ζ denotes the Riemann
zeta function [9]. Therefore upon simplification,

cr = −(12
+ 22
+ 32
+ . . . (t − 1)2)

⇒ cr =

t−1∑
k=1

(ik)2.

Hence, proved.

6. Fundamental Theorem of PPP

The fundamental theorem of arithmetic [1] states
that for every natural number n > 1, n is either a
prime number or is composite such that it could be
expressed as a product of prime numbers raised to
suitable powers. For example, 3 is prime, whereas
6 is composite such that 6 = 2 × 3. Consider the
complete set of odd numbers 2s + 1, s ∈ Z+. This
could be written as 2(s+ 1)1 − 1. It has to be noted
that, any number of this sequence is either prime
or is composite such that its prime factors again
belong to the same sequence. For instance, if we
consider s = 3, we have 2(3 + 1) − 1 = 7, which
is prime and it belongs to the sequence. Now
consider s = 4, we have 2(4 + 1) − 1 = 9, which
is composite. The prime factors of 9 is 3, which
again belongs to the same sequence.

Let P = a+b, where a and b are the odd leg and
even leg of a PPT respectively. If P is prime, then it
is termed as a Primitive Pythagorean Prime (PPP).
The fundamental theorem of arithmetic obviously
holds for PPPs. The interesting thing is that if P
is not a prime number, then it is expressible as
the product of prime numbers raised to suitable
powers which are all again PPPs.

6.1. Conjecture 1

It is conjectured that, every P is either a prime
number, or is a composite number which could
be expressed as a product of PPPs. i.e. consider
the complete set of P = a + b, which could be
represented as, 2[r+(2s−1)]2−(2s−1)2, r �multiples
of prime factors of 2s − 1. It is conjectured that
every number of this sequence is either prime
or could be expressed as the product of prime
factors raised to suitable powers such that the
prime factors in turn belong to the same sequence.
The same property is satisfied by the set of odd
numbers and the set of natural numbers and also
by the followed sequences:
δ1 = |a ± b| − {1}
δ2 = |a ± 2b| − {1}

δ4 = |a ± 4b| − {1}
δ5 = c
where, a, b, c are the odd leg, the even leg, and
the hypotenuse of a PPT respectively.

It is not known if more of such sequences exist
or not which produce numbers having unique
prime factorization and also that the prime fac-
tors belonging to the same sequence, ignoring the
elementary sequence generated by pk, where p is
a prime number raised to an integer k.

Proposition 6.1. Consider all PPTs whose hypotenuse
and even leg differ by a unit length. i.e. consider all
PPTs, corresponding to r = 1, s ∈ Z+ (column one of
PPT table). For any value of s, there cannot be more
than three consecutive PPPs, i.e. the maximum number
of PPPs associated with s in sequence is three OR if s
yields a PPP, and if s + 1 yields a PPP, and if s + 2
yields a PPP, then s + 3 cannot yield a PPP. Also,

s + 2 ≡ 0 (mod 7)

i.e. s + 2 (mod 7) = 0, or s + 2 is an integral multiple
of 7.

Note: The only exception for divisibility by 7, is the set,
s = 1, s + 1 = 2, s + 2 = 3.

Proof. When we consider the first column of the
PPT table, the PPPs belonging to this column will
be P = 2(s+1)2−1. Let us say that P is not a prime
and has 7 as a prime factor. In that case let,

P/7 = x

then clearly,

s =
(

7x + 1
2

) 1
2

− 1.

Solving RHS to obtain s ∈ Z+, one can observe that
we obtain s = 1, 4, 8, 11, 15, 18, 22, 25, 29. . . . so
∀ s taking the values of the preceding sequence,
we can affirmatively say, that P will not be prime
and also that P has a prime factor 7. As we can
see, this sequence could be split and represented
as 1 + 7s and 4 + 7s. Therefore, we could conclude
that the maximum number of PPPs that could
occur together can never be more than 3. And also,
wherever the three PPPs occur together, the value
of s corresponding to the third PPT is a multiple
of 7.

Proposition 6.2. Consider the first column of the PPT
table. The sum of the values of s corresponding to which
P encounters the first two occurrences of a prime factor
G must be equal to G − 2.
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Proof. Given, 2(s1+1)2−1 = P1 and 2(s2+1)2−1 = P2.
Let

P1 ≡ 0 (mod G).

Need to show that at s = G − 2 − s1,

P2 ≡ 0 (mod G)

P2 = 2(s2 + 1)2 − 1

⇒ P2 = 2(G − 2 − s1 + 1)2 − 1

= 2(G − (s1 + 1))2

= 2G2 − 4G(s1 + 1) + 2(s1 + 1)2 − 1

= 2G2 − 4G(s1 + 1) + P1.

Therefore, G divides P2. Hence proved. Also it is
evident that at s = s1 + hG and s = s2 + hG, h ∈ Z+

P ≡ 0 (mod G).

7. Conclusion

We have seen a structured approach for obtaining
all the PPTs without repetition using a PPT table.
This approach has made it easy for us to explore
various properties of PPTs. We were able to grasp
the conjecture on the PPPs which could be of
much use in the future considering their close re-
semblance with the properties of positive integers
subject to Fundamental Theorem of Arithmetic.
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