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Isoperimetric Inequalities and Magnetic
Fields at CERN

Brett McInnes

Abstract. We discuss the generalisation of the classical
isoperimetric inequality to asymptotically hyperbolic
Riemannian manifolds. It has been discovered that
the AdS/CFT correspondence in string theory requires
that such an inequality hold in order to be internally
consistent. In a particular application, to the systems
formed in collisions of heavy ions in particle colliders,
we show how to formulate this inequality in terms of
measurable physical quantities, the magnetic field and
the temperature. Experiments under way at CERN in
Geneva can thus be said to be testing an isoperimetric
inequality.

1. The Isoperimetric Inequality and its

Generalisations

The notion that there must be some universal

inequality relating the volume of a finite region

in space, and (a suitable power of) the area of the

boundary of that region, has intrigued mathemati-

cians since antiquity [1]: one speaks of isoperimet-

ric inequalities. One of the most important devel-

opments in recent theoretical physics has been the

realisation, beginning with Juan Maldacena’s cel-

ebrated 1997 worka [2], that there is also a certain

(extremely deep) relation between the physics in

certain regions of space, and the physics on the

boundary of that region. The two relations, one

in geometry, the other in (sometimes surprisingly

concrete) physics, are themselves related: and this

is the theme of the present work.

In the simplest case, the isoperimetric inequal-

ity states the following. Let L be the length of a

simple closed curve in the plane, and A be the

area it encloses. Then

A ≤
1

4π
L2, (1)

with equality holding if and only if the curve is a

circle. A useful way of re-stating this is as follows.

Consider a circle of circumference L, containing an

area A; then A = 1
4πL2. Now continuously distort

the circle in such a way that the circumference

remains equal to L: the result is always to decrease

the area below 1
4πL

2.

aThis paper has now been cited over 11000 times.

As with so many familiar facts in mathematics,

it is worth while to stop for a moment and reflect

on how extraordinary this simple relation really

is. What it is saying is that, by knowing something

about the boundary, one immediately knows something

about what is happening deep inside, perhaps very far

from the boundary: one cannot have a vast area

lurking inside a small boundary. That is far from

obvious, and imaginative people [3] have often

entertained other possibilities.

Indeed, it is easy to see that, if we allow arbi-

trary geometries, then no isoperimetric inequality

is possible: we just have to imagine that the

interior is made of (mathematical) rubber, which

we can distort to any size without changing the

length of the boundary. One obtains the inequality

(1) only by using the fact that the geometry is

planar. This seemingly trivial constraint on the ge-

ometry must be deeper than it looks: the internal

consistency of planar geometry somehow implies

that only those pairs (A, L) which satisfy (1) are

possible.

In other, non-planar geometries, analogues of

the isoperimetric inequality can still exist, but

they often take quite different forms to (1). For

example, consider a four-dimensional space with

Cartesian topology and coordinates (r, t, x, y), in

which distances are measuredb according to the

metric

g = dr2
+ e2r/ρ

(

dt2
+ dx2

+ dy2
)

, (2)

where ρ is a certain positive constant. Now con-

sider a finite domain 0 ≤ r ≤ R, 0 ≤ t ≤ T,

0 ≤ x ≤ X, 0 ≤ y ≤ Y, and consider the

subspace defined by r = R: think of it as the three-

dimensional boundary of this four-dimensional

domain. (That is, ignore the “sides” and focus on

the outer surface.) The “volume” of this boundary

(it is usually called the “area” of this “surface”,

bReaders who are not familiar with the details of Riemannian
geometry are invited to interpret this formula in the obvious
way: that is, dr represents a “small” change in r, and so on,
and the formula itself is a straightforward generalisation of
Pythagoras’ theorem.
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not to be confused with the two-dimensional area

we discussed earlier), AR, is clearly AR = TXYe3R/ρ.

Since it measures the size of the boundary, this

will be the analogue of the circumference L in (1).

Next, compute the volume VR enclosed by this

surface, measured outwards from r = −∞: it is

just ρ3 TXYe3R/ρ, and this of course is the analogue

of the area A in (1). So we have

AR =
3

ρ
VR. (3)

Now in fact, the space with which we are

dealing here is justc four-dimensional hyperbolic

space, the space of constant negative curvature

−1/ρ2. This space is maximally symmetric (it is

the negatively curved analogue of the sphere),

and so the situation we have been considering

is analogous to the case of equality in (1): for

one has equality only in the case of a maxi-

mally symmetric region in the plane, namely the

circle. That is, Eq. (3) is a special case of an

“isoperimetric inequality”, with four-dimensional

hyperbolic space playing the role of the circular

disc.

If we pursue this analogy, then we should ex-

pect that the isoperimetric inequality itself should

take the form

AR −
3

ρ
VR ≥ 0 (4)

for all R and for some class of distortions of

four-dimensional hyperbolic space — recall that

we interpreted (1) as stating that equality be-

comes a strict inequality when the circular disc is

distorted.

Notice that (4) differs, in one important way,

from (1): it does not compare the volume with

a power of the area, but rather with the area

itself. An inequality like (4) could not possibly

hold everywhere in Euclidean space, because, as

the surface becomes larger, the volume will even-

tually grow much more quickly than the area.

Hyperbolic space is different: as we saw above,

the area and the volume both grow exponentially

as the surface increases in size. One can in fact

see this in a qualitative way by means of a close

study of M C Escher’s “Circle Limit” illustrations:

see for example “Circle Limit IV” [4].

The question now is this: for which “class of

distortions” of hyperbolic space does (4) hold?

(Of course it will not hold if we allow arbitrary

cTechnical point: we are using possibly unfamiliar coordinates,
which in fact do not cover all of hyperbolic space.

distortions, just as in the case of the circle.) As

might be expected, this is a very difficult question

to answer, but some interesting results have been

established.

Even to state these results in full rigour would

take us too far afield, so I will attempt to state

them in a non-rigorous way, leaving the interested

reader to consult the references below for full

definitions.

First, we need the concept of an asymptoti-

cally hyperbolic manifold: (very) roughly speaking,

this is a space which resembles hyperbolic space

more and more closely “towards infinity”. (Again,

imagine taking “Circle Limit IV” and distorting

the central region, while leaving the region “near”

the boundary intact.)

Next, we need the concept of an Einstein man-

ifold. The familiar concept of the curvature of a

surface, usually called the Gaussian curvature,

can be generalised to higher dimensions. One

begins by recognising that while a smooth two-

dimensional surface has a well-defined tangent

plane at each point, higher dimensional tangent

spaces can be “sliced” in many different direc-

tions at a given point. The result is that a given

manifold can be curved in different ways even at

a given point, depending on the direction of the

“slicing”. An asymptotically hyperbolic Einstein

manifold is one in which the various curvatures

at a given point are forced to add to the same

value that they would have in hyperbolic space;

in the case of (a higher dimensional version of)

“Circle Limit IV”, imagine that one distorts the

geometry so that it looks “more spherical” in

some directions, but “more hyperbolic” in other

directions, taking care that the distortions all sum

to zero. (The term “Einstein manifold” arises, of

course, from General Relativity theory, in which

certain important spacetimes (though not all) do

satisfy the Einstein condition.)

Thus, if we replace hyperbolic space by an

asymptotically hyperbolic Einstein manifold, we

are essentially allowing greater generality but

“within reason”: the asymptotic region is not

(much) changed,d and the distortions have to

be done in such a way that “on average” they

do not change the curvature of hyperbolic space

itself.

dIn particular, there is a well-defined (direction-independent)
negative curvature there, and one can again define a parameter
ρ by equating this curvature to −1/ρ2.
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It is possible to prove, with the addition of a

technical conditione (which we need not discuss

here, because it is always satisfied throughout our

discussion), the following result [5]–[8]:

If an asymptotically hyperbolic space is an Einstein

manifold, then, for every surface homologous to the

boundary at infinity (that is, a surface like the one at

r = R considered above), the analogue of inequality (4)

is satisfied.

Thus, we have a rather clear picture of the

kinds of generalisations of hyperbolic space for

which an isoperimetric inequality can be expected

to exist: the Einstein manifolds.

Now we turn to what appears to be a radically

different world.

2. The AdS/CFT Correspondence

A major field of research in contemporary fun-

damental physics is the AdS/CFT correspondence

put forward by Juan Maldacena [2] in 1997. To

state it, we first need to define AdS, or anti-de

Sitter spacetime. This is a spacetime with a metric

obtained from the one in Eq. (2) above by means

of an apparently minor change: just reverse the

sign of the term involving dt2:

g = dr2
+ e2r/ρ

(

− dt2
+ dx2

+ dy2
)

. (5)

A manifold with such an object defined on it (a

non-singular bilinear form of signature (−1,1,1,1))

is called a semi-Riemannian manifold; in General

Relativity, such manifolds are used to represent

spacetime, so that indeed t now represents time.

This is anti-de Sitter (AdS) spacetime: it is the

semi-Riemannian analogue of hyperbolic space.

Similarly, one has asymptotically AdS spacetimes,

exactly analogous to the asymptotically hyper-

bolic spaces discussed earlier. AdS is an extremely

strange spacetime, not at all like the one we

inhabit, but its theoretical interest is very great.

Now let us consider what happens when r

becomes extremely large. Then the exponential

factor ensures that the term dr2 becomes increas-

ingly negligible,f and so, up to an overall factor,

the geometry “at infinity” is flat: the metric is just

eFor the curious: the condition is that the boundary of the
conformal compactification, with the natural induced confor-
mal structure, should have a non-negative Yamabe invariant.
All of the boundary manifolds considered here have, in fact,
a vanishing Yamabe invariant.
fAgain, this can be formulated rigorously, but that need not
detain us. I will dispense with such observations henceforth,
particularly since we are now talking about physics.

− dt2
+ dx2

+ dy2. Now this geometry is just (the

three-dimensional version of) the ordinary geom-

etry in which most of physics outside General

Relativity is done: it is Minkowski spacetime. It is,

for example, the geometry used by particle physi-

cists when they discuss what happens in particle

colliders, such as the celebrated one at CERN in

Geneva. Particle theorists discuss the interactions

of quarks and other particles using quantum field

theories, the quantum mechanical generalisations

of electromagnetic (and other) fields. A particular

class of such quantum field theories is given the

name of Conformal Field Theories (CFTs): here the

word “conformal” means that these theories are

indifferent to the overall metric factors like the

one we discarded above.

Maldacena’s epochal claim, based on certain

considerations in string theory (and subsequently

buttressed by many theoretical tests) is, in broad

terms, this: the physics of three-dimensional CFTs

defined on the flat boundary of an asymptotically

AdS spacetime completely captures the physics of

any system in that four-dimensional spacetime.

To understand how extraordinary this claim is,

consider how broad is the class of asymptotically

AdS spacetimes: it includes, for example, the AdS

analogue of a massive, electrically and magneti-

cally charged black hole endowed with angular

momentum. An example [9] of a metric for such

a geometry is as follows:

g(ℓdyKMV0) = −
∆r∆ψρ

2

Σ2
dt2
+
ρ2dr2

∆r
+
ρ2dψ2

∆ψ

+
Σ

2

ρ2

[

ωdt − dζ
]2 , (6)

where the coordinates are (t, r,ψ, ζ) and where

ρ2
= r2
+ (ℓ − aψ)2

∆r =
(r2
+ ℓ2)2

L2
− 8πM∗r + a2

+ 4π
[

Q∗2 + P∗2
]

∆ψ = 1 +
ψ2

L2
(2ℓ − aψ)2

Σ
2
= (r2

+ ℓ2)2
∆ψ − ψ

2(2ℓ − aψ)2
∆r

ω =
∆rψ(2ℓ − aψ) − a(r2

+ ℓ2)∆ψ

Σ2
;

(7)

here M∗, a, ℓ, Q∗, P∗ are certain constant parameters

describing the physics of the black hole. Accord-

ing to Maldacena, such an enormously complex,

fully four-dimensional object can be completely

understood by studying some relatively simple

conformal field theory defined infinitely far away
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on a simple spacetime of only three dimensions.

Because holograms are two-dimensional objects

which appear to be three-dimensional, this as-

tonishing claim sometimes goes by the name of

holography.

How can a four-dimensional system be fully

equivalent to a three-dimensional system? The

only possible answer is that the four-dimensional

system must be constrained extremely tightly, so

that it does not contain as much information as

it seems to do. In other words, the physics of

asymptotically AdS systems must be governed by

extremely restrictive conditions, or new “laws of

Nature”, beyond those we know. Most of these are

unknown, and much of contemporary theoretical

physics research amounts to a search for these

conditions.

The AdS/CFT correspondence essentially

states that by knowing something about the physics

of the boundary of an AdS-like spacetime, one

immediately knows something about the physics of

what is happening deep inside. This phrase should

look familiar — it is precisely how we described

isoperimetric inequalities in the preceding section.

So it was remarkable and beautiful when, in

2014, Ferrari and Rovai [10] showed that one of

the internal consistency conditions for the AdS/CFT

correspondence is precisely the inequality (4). To put

it as provocatively as possible: the AdS/CFT

correspondence works because the isoperimetric

inequality is satisfied.

But is it satisfied? Well, we saw above that it

certainly will be, if the four-dimensional “bulk”

(in physics parlance) is an Einstein manifold. Now

the Einstein condition is very popular among

differential geometers: it has turned out to be a

very natural generalisation of the condition of

being a space of constant curvature, and there

is a large literature on it, including a thick and

well-regarded tome authored by A L Besse [11], a

relative of N Bourbaki. Ironically, however, there

are important physics applications in which the

Einstein condition must be abandoned. Let us

consider one of these.

3. The Holography of Magnetic Fields

In recent years, it has come to be realised that

incredibly intense magnetic fields can arise in

realistic physical systems: for example, a certain

kind of neutron star (called a “magnetar”) can

have magnetic fields in the region of 1010 tesla (the

standard unit for magnetic fields); by comparison,

the reader’s brain, as a result of reading this work,

generates a magnetic field of around 10−12 tesla,

while the strongest magnets that can be bought

on the internet (neodymium-based “rare-earth”

N52 magnets), which are indeed astonishingly

strong, generate a field of around 1 tesla. The

magnetic field of a magnetar would be lethal to

humans at a distance of order 1000 kilometres,

by disrupting the chemistry of the body. Yet even

magnetar fields are dwarfed by fields which can

be produced (briefly) in the laboratory.

Particle colliders, such as the famous LHC in

Geneva, can be used to collide not just particles

but entire atomic nuclei. When this is done, the

nuclei often collide “off-centre”, and the resulting

swirling motion gives rise to fantastically large

magnetic fields, perhaps as high as 1015 tesla.

Matter under these extreme conditions is not well-

understood, and so holographic methods (among

others, of course) are employed: the magnetic

field is regarded as residing on the boundary of

an asymptotically AdS spacetime, as described in

the previous section.

The matter formed in these collisions is ex-

tremely hot (with temperatures running into tril-

lions of degrees), so one needs a holographic de-

scription which takes this, too, into account. This

is done by considering an asymptotically AdS

black hole: as is well known, black holes radiate

thermally (they give off Hawking radiation), and

this temperature can be adjusted to the desired

value by adjusting the black hole parameters.

Up to this point, the “bulk” spacetime is an

Einstein space, so the isoperimetric inequality

holds. However, in order to obtain a magnetic

field at infinity, one needs to put a magnetic

charge on the black hole. The key point is this:

the magnetic charge naturally gives rise to a

magnetic field (in the “bulk” as well as on the

boundary). In accordance with General Relativity

theory, the presence of any form of matter in the

spacetime alters its geometry, and one can show

that, when the matter in question is a magnetic

field, it then ceases to be an Einstein manifold. It

is therefore no longer clear that the isoperimetric

inequality holds, and so the internal consistency

of the theory is problematic.

The present author has shown [12] that the

isoperimetric inequality continues to hold even in

5

the presence of a magnetic field, provided that this

field is not too strong. The question, of course, is

to define “too strong”.

In [12] we proceeded as follows. If one wishes

to increase the magnetic field on the boundary,

one needs to change the magnetic chargeg on

the black hole in the bulk. When this is done,

it affects, as we mentioned above, the geometry

of the bulk spacetime. In particular, it produces a

subtle change in the relative magnitudes of areas

and volumes, and this is why it can lead to a

violation of the isoperimetric inequality. However,

changing the magnetic charge also has an effect

on the Hawking temperature of the black hole,

and this gives us a way of specifying how strong

the magnetic field should be in order to qual-

ify as “too strong”: one has to compare it with

the temperature (actually, with the square of the

temperature).

The final result is remarkably simple: one

finds that the isoperimetric identity will be

violated — that is, the holographic principle will

be violated — if the magnetic field B and the tem-

perature T fail to satisfy the following inequality

(where we are using so-called “natural” units):

B ≤ 2π3/2T2
≈ 11.14 × T2. (8)

One might say that this is the physics version of

the isoperimetric identity, at least in this particular

application.

Is this inequality actually satisfied, in ex-

periments? The RHIC experiment [13], at the

Brookhaven National Laboratory in the United

States, collides gold nuclei at energies sufficient

to produce a system with extremely high tem-

peratures and, in off-centre collisions, extremely

high magnetic fields. The reported values of B

and T2 from that experiment are roughly similar,

so the inequality (8) is indeed satisfied. However,

in view of the huge quantities involved, and the

inevitable experimental uncertainties, the factor of

≈ 10 by which the right side exceeds the left is

somewhat uncomfortably small.

The ALICE experiment [14] at CERN in

Geneva collides lead nuclei at higher energies,

but the temperature of the system is only about

40% higher than at the RHIC, while the magnetic

fields might be as much as 15 times as large; so

gThe reader may be aware that magnetic charge has never
been observed. This is not relevant here, as we take the
view that the “bulk” is a mathematical construct, not a “real”
spacetime.

the “isoperimetric inequality” still holds, but by a

still smaller margin. It is likely that the inequality

will be violated at some future facility, perhaps

one which might be built in future in China [15].

If this happens, and if AdS/CFT is correct, then

we must be missing something: there must be

some physical effect which we are neglecting,

and which changes the bulk geometry in such a

way that the isoperimetric inequality is protected.

What that effect might be is a subject of current

research.

4. Conclusion

The fact that highly sophisticated pure mathemat-

ics can be useful in physics has been celebrated

many times. What is often not appreciated is the

unexpected way in which this often happens. We

began by considering a very ancient and beauti-

ful pure mathematics problem, the study of the

classical isoperimetric inequality. This inequality

has analogues in many much more complicated

spaces than the flat plane; and it turned out

that one of these analogues places an entirely

unexpected constraint on the behaviour of matter

under the most extreme conditions we can test

experimentally. We concluded by showing that

the most advanced experiments on heavy ions

currently under way actually push an isoperimet-

ric inequality to its limits.h In this sense, CERN is

actually performing “mathematical experiments”!
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