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Unexpected Ramifications of Knot Theory
Mx A I Gaudreau

“No arbitrariness like the choice of a metric mars the
nature of a knot – a trefoil knot will be universally
recognisable wherever the basic geometric conditions
of our world exist. (One is tempted to propose it as an
emblem of our universe.)”

Gerhard Burde & Heiner Zieschang
Summer 1985

0. Introduction

A well known mathematical joke goes as follows:
“a topologist is someone who doesn’t see the dif-
ference between a doughnut and a coffee mug”.
Aside from capturing one of the main ideas of
topology, the concept of genus as an invariant
under diffeomorphism, it happens to capture the
essence of mathematics itself; coffee.

But is this all there is to topologists?
Topology,a which arose in the 20th century is

one of the most recent branches of mathematics.
Due to its dependence on the notion of continuity,
it lacks any precedent from antiquity. The fact that
it exists independently of number systems, and
appears to have little care for real world limitation
of how surfaces can be deformed, might lead
some to think that it cannot have any applications.
In fact, for decades after the idea of topology
was defined, under the name analysis situs, there
hardly were any problems that mathematicians
could associate with this type of analysis. This all
changed with Vandermonde.

Industrialisation, cloth production, shoelaces,
etc. Nobody can go a day in life without benefit-
ting from non-trivial embedding of codimension
two manifolds. That is to say: knots, tangles, and
braids. Moreover, knot theory has been related to
numerous research topics in fundamental sciences
such as quantum physics, molecular biology and
even theoretical psychology [16].

This paper is in three core sections. The first
describes the inspiration and motivation for knot
theory, the second concentrates on the role of
knots in the development of topology, and the
last talks about applications and repercussions.

aThe study of the properties of geometrical objects which are
preserved by continuous deformations.

Throughout the text, short biographies of notable
historical figures can be found. Unless otherwise
stated, the source material for them is [38].

The somewhat unorthodox thesis of the fol-
lowing, and possible answer to the explicit ques-
tion above, is the idea that the essence of math-
ematics is a quest for the understanding of the
workings of the world.

1. Inspiration

Mathematics, as it is now understood, is a fairly
recent invention. Until the 18th century shift to-
wards axiomatic systems and logic, mathematics
was mostly restricted to geometry, and focused
on applications. However, knots were already an
important feature of everyday life.

1.1. Functional knots

Due to the nature of strings’ materials, very few
knotted objects have been found by archeologists.
The oldest preserved knot [16] is a fishing net, dat-
ing to 7500 BCE found near the coast of Finland.
From the existence of artefacts such as sewing
needles and decorative beads, it is assumed that
strings and knots were invented 300,000 years
ago, before fire itself. In prehistorical times, the
recording of techniques to create knotted object
depended on something one might call intuitive
knot theory, and consisted of mnemonics one can
assume were similar to the tales told to children
today to teach proper shoe-lacing.

In fact, tying knots is not even an activity that
is restricted to humans. Gorillas frequently use
granny knots when creating nests, chimpanzees
have been observed knotting and unknotting
chords in captivity, and orangutans sometimes
even make rope. It is thus possible that even the
homo habilis (ancestor of the homo sapiens, living 2
million years ago) had rope [47].

As humans of the time had no writing sys-
tems and even less mathematical abstractions, the
resulting knots had properties and technological
uses which could have appeared nearly divine.
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(A) Dürer’s First Knot. (B) Dürer’s Sixth Knot.

Fig. 1. Selected examples of prints of knots by Dürer.

For example, the ancient Greeks believed that
a wound bound with a “Hercules” knot would
heal faster [39]. Some of these superstitions are
still preserved today, through friendship bracelets,
and chinese good luck knots.

1.2. Knots in art

Because of the importance of knots in technology,
it is natural that they feature heavily in the art
of many cultures. Moreover, the analysis of such
patterns happens to benefit from a mathematical
approach. This section presents some highlights of
artwork representing knots, and is by no means
an exhaustive survey.

Art is called modular [22] when it is composed
of several basic elements (modules) that combine
to create a larger piece. Modular art is easily
modelled using regular graphs with a finite set
of labels and some of it renders knots in one of
two ways. The first way is as a connected sum,
where the modules are depicting knots in an open
string, connected by linking the free ends. The
other option is creating a plaid where the modules
are crossings or arcs. Examples of each of these are
respectively celtic knots and pulli kolam, treated

below. Mathematically, one can read about knot
mosaics in [32].

An interesting property of planar art is its
ability to encourage a three-dimensional interpre-
tation from the viewer, even when such a figure
would be impossible. This is the phenomena that
Escher famously used in his art. Knot design
always includes a perspective component to ac-
count for the over and under crossing informa-
tion. However, one might also assume that the
knot is rigid. In the case of the Borromean rings,
if each component was to be a planar ring, the
construction proves to be impossible, not only in
its natural projection, but also in any other posi-
tion of rings in space that would be equivalent
to Borromean rings. However, it is possible to
construct them using flat triangular rings.

Aside from these simple symbols, some art
features intricate knots. For example, the First
Knot of Dürer, Fig. 1, printed around 1506 was
inspired by Da Vinci’s work on his family seal.
The figure in the print has 32 axes of symme-
try, and displays an intuitive understanding of
hyperbolic geometry. Dürer constructed another
five knots as an exercise in variation. Aside from
visual art, Dürer worked on classical geometry,
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What is a Kolam? 

Figure 1 depicts an example of kolam, an ancient south indian art form. This popular type of kolam is called the pulli 

kolam, which consists of a series of dots (called pullis in Tamil) placed on a surface, each of which is then circumscribed 

by lines that form closed orbits. These kolams are a very common sight on the threshold of homes in southern India 

(states of Tamil Nadu, Kerela, Karnataka, Andhra Pradesh, Telangana).  With every sunrise, women wash the floor in 

front of the house, and using rice flour, place the dots and draw a kolam largely from memory.  Learning how to draw 

kolams from an early age is an important aspect of growing up in southern India, especially for girls. As they continue to 

learn from other women in their family, the kolams become increasingly complex, with a larger number of dots and more 

intricate line orbits. Remembering the dot configurations and line orbits is a daily exercise in geometric thinking. The 

process is immensely pleasurable, especially when a kolam is successfully completed with no loose ends.  

 

Fig. 1. Example of a pulli kolam called Brahma’s knot.   

While the conventional kolams impose several constraints, here we begin with three simple rules in order to give 

ourselves greater room for discovery and creativity. Given an arbitrary arrangement of dots on a plane, the following 

three mandatory (M) constraints define a kolam:   

M1: All dots should be circumscribed by a line. 

M2: All line crossings must be points.  

M3: All line orbits should be closed, i.e. no loose ends. 

In addition to the above rules, one may choose to apply additional optional guidelines (O).  There is no limit to the 

number of such guidelines that can be followed, but we will explore some of them in this work.  

While kolams are widely rendered from memory, the process of creating entirely new ones, especially complex 

kolams with a large number of dots is far more challenging.  This work attempts to provide a simple 5-step process by 

which anyone can create a very large number of kolams from any arbitrary pattern of dots. The method deemphasizes 

memory; in principle, anyone who knows just the method will be able to draw a large number of kolams with no other 

prior knowledge.   

 Many previous pioneering works exist that have provided mathematical insights into the form of a kolam over the 

past four decades.  These include converting kolams into numbers and linear diagrams (Yanagisawa, & Nagata, 2007), 

Fig. 2. Example of a Pulli Kolam from [15].

but it is unknown if he made any mathematical
analysis of the knots.

Pulli Kolam is an old Tamil art form usually
created on the threshold of south Indian houses.
Traditionally done by women, the patterns are
passed down from generation to generation and
drawn from memory each morning on a cleaned
ground. The first step is to place a collection of
equidistant dots, then to circumscribe them in
complicated orbits, often a single closed line, to
create a symmetrical pattern. The patterns do not
touch the dots, and have an important symbolism.

1.3. Medicine

Surprisingly, the two oldest scientific texts about
knots are of a medical nature. The first one is by
the Greek, Heraklas [39], who around 100 BCE,
wrote a text about 18 different ways to tie slings.
The work was reproduced many times until it
was first illustrated in the early 16th century. The
second text was produced by a French midwife
named Louise Bourgeois, and mentions, in 1609,
the birth of a child with a knotted umbilical cord.
She believed the event to be extremely rare, and
it would indeed take over two hundred years for
an obstetrician to provide more details on the
phenomena and claim, to much relief that it is
not fatal in humans.

Since these knots are produced in an inelas-
tic material, classical geometry can be used to
understand the conditions in which a knot can
be formed. Since the fetus grows, a knot that is
formed early during gestation cannot be undone
later. Moreover, Da Vinci gave a rule of thumb
that, in humans, the cord is as long as the baby

at birth. For a knot to be formed, one needs that
umbilical cord to be longer than the circumference
of the fetus. This proportion is often achieved, and
so the estimate that about 1% of human births
have knotted umbilical cord is fairly reasonable.
This is all assuming that the uterus contained
a single fetus. In multiple gestations, which are
quite common for some species, the cords can
get linked, and this situation is reputably more
dangerous. More information can be found in [7].

1.4. Vortex atom theory

The Vortex Atom Model (concurrent to J J Thom-
son’s widely accepted plum pudding model [8])
was an idea of William Thomson, also known
as Lord Kelvin which was popular in the UK in
1870–1890. It was inspired by the Victorian under-
standing of fluid dynamics in perfect conditions
and motivated by the unimaginability of the void.

A theory of ether originated in Ancient Greece,
and had been supported by even Descartes and
Newton, but received more notoriety after the
work of Maxwell and Thomson on waves and
electricity which lead to the discovery of the elec-
tron, and an early theory of particle-wave duality
for the photon. And so, for wireless, particle-
less energy to travel, the existence of ether was
critical.

Quick facts: Lord William Thomson, Baron
Kelvin of Largs (1824–1907), Irish.

Thomson was the son of a mathematician,
and grew up in a strict religious household. He
started attending university at the age of ten, and
wrote his first paper in 1839, publishing one a
short two years later. He finished the Cambridge
Mathematical Tripos in 1845, and moved to
Paris to work on physics, studying electrical
flow under the influence of Liouville and Poisson.

Thomson took a position of Professor of Physics
at the University of Glasgow, where he was a
mediocre lecturer, and his initially revolutionary
work turned slowly obsolete as he refused to
believe his contemporaries. He was knighted in
recognition for helping with the installation of
a trans-atlantic telegraph cable, this accomplish-
ment bringing him also fame, fortune and eventu-
ally the title of Baron. He served as president for
the Royal Society, the British Association for the
Advancement of Sciences, and the Royal Society
of Edinburgh.

April 2016, Volume 6 No 1 9

Asia Pacific Mathematics Newsletter



4

The goal of the vortex atom theory was none
other than having an explanation for everything
using only hydrodynamical equations. To quote
George Fitzgerald: “If it is true, ether, matter, gold,
air, wood, brains, are but different motions.”

The first paper about the vortex atom by
Kelvin was published in 1867. It was inspired by
Tait’s experiment with smoke rings designed to
reproduce Helmholtz’s theoretical results about
the stability of the vortex tubes in an ideal fluid.
In 1885, the lack of result that this theory was
generating prompted the novel idea of a vor-
tex sponge, where atoms are arrays of tightly
packed vortices. William Hicks proposed further
modifications, which provided explanations for
gravity and electromagnetism. Kelvin’s other ap-
proach was towards non-circular vortices: knots
and rings. However, they could not prove that
such exotic configurations were stable. Some of
the good points of this theory are the under-
standing that such loops have a fixed mass, a
vibration and a way to interact with each other.
It also explained the spectral lines. Vortex theory
fell out of favour because it was too flexible and
didn’t allow to make predictions, but only model
observed phenomena.

1.5. Imagining higher dimensions

To a modern reader, imagining four dimensions
is a simple exercise in formalism that vector
spaces accommodate easily. Descartes introduced
co-ordinate systems in the 1637 philosophy clas-
sic Le Discours de la Méthode, and Grassmann
introduced vector algebra in 1844, giving one
all the tools to imagine and manipulate a four-
dimensional space [29]. However, those works
were quite niche at the time, and many philoso-
phers lacked the mathematical intuition or curios-
ity to understand them.

The paper “On Space of Four Dimensions” [49]
was published in 1878 by Karl Friedrich Zöllner. It
argued that the three-dimensional nature of space
was a human construction made to account for
one’s observations. More so, experiences which
contradict this assumption would lead to new
theories for the mathematical formalism of space
[5]. At the time, it was popular to connect math-
ematics to psychic research.

For example, if space was to be two-
dimensional, a curve with a single self intersection
would be de facto knotted and this intersection

would allow no interpretation as being a crossing
with one strand going over the other one, without
the existence of a third dimension, in which it can
be resolved. Similarly, adding a fourth dimension
would allow to undo any knot without cutting it
or creating self intersections, as proved by Klein.
Zöllner gathered inspiration from Gauss and Kant
to derive spiritual meaning from those mathemat-
ical facts. Namely, that since one can imagine the
fourth dimension, it must exist.

1.6. Cryptography

Khipub are a notational system of Inca origin,
which were used both as record keeping and
messaging system. Khipu (this word is both plural
and singular) were made of strings, with a thick
primary cord to which was attached many levels
of secondary strings, knotted to inscribe numbers
or words. The data was recorded in the type and
position of the knots and strings themselves. So
far, only the numerical khipu have been translated
[25], the others remain a mystery. Khipu being a
writing system is known because of the spanish
invaders.

In the past 15 years, research in braid group
cryptography has been conducted [14]. It is based
on the complexity of the word problem in the
braid group, and encodes messages as braids, in
an entirely different way from khipu. Topolog-
ical invariants could lead to new cryptography
resources, or on the contrary force this line of
research to close. One of the braid theoretic cryp-
tosystems is based on the conjugacy class of the
braid, which corresponds in fact to a link or knot.

2. Creation

2.1. Etymology

The study of problems that are now called topo-
logical started when Leibniz pointed out that
there was a need for a different approach to
geometry. One that cared less about distances and
explicit formulas, but concentrated on the relative
positions of objects. He dubbed this analysis situs,
the analysis of position. However, Leibniz failed
to propose problems whose solutions could be
obtained by such means and it was Euler who
had the privilege of stating and solving the first

bSometimes also spelled quipu.
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Figure 3. Bridges of Königsberg

For the birth of knot theory one had to wait another 35 years. In 1771 Alexandre-
Theophile Vandermonde (1735-1796) wrote the paper: Remarques sur les problèmes de
situation (Remarks on problems of positions) where he speciÞcally places braids and knots
as a subject of the geometry of position [126]. In the Þrst paragraph of the paper Vander-
monde wrote:

Whatever the twists and turns of a system of threads in space, one can always obtain an
expression for the calculation of its dimensions, but this expression will be of little use in
practice. The craftsman who fashions a braid, a net, or some knots will be concerned, not
with questions of measurement, but with those of position: what he sees there is the manner
in which the threads are interlaced.

Figure 4. Knots of Vandermonde

In our search for the origin of knot theory, we arrive next at Carl Friedrich Gauss (1777-
1855). According to [106, 39] :

“One of the oldest notes by Gauss to be found among his papers is a sheet of paper
with the date 1794. It bears the heading “A collection of knots” and contains thirteen

5
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Fig. 3. Illustration of the bridges of Königsberg from [39].

topological question: Based on the map of
Königsberg, Fig. 3, is there a path that goes over
each of the bridges exactly once?c

One would have to wait until the 19th century
for the new name. The word topology comes from
the greek τoπoς, meaning position, and was first
used by Listing, in his paper “Vorstudien zur
Topologie” in 1848. He chose to use this word
instead of the latin analysis situs since its literal
translation “geometry of position” was already
in use by von Staudt, for what is now called
projective geometry. Let us consider his view for
the future of the field.

Die Symmetrie des Raumes und des
Bewegung bildet endlich einen ergiebi-
gen Stoff für künftige topologische Un-
tersuchungen, die sich theilweise schon
an das bereits über die Position Vor-
getragene anknpfen lassen. Wenn auch
die Begriffe des Gröfse, des Masses, der
geometrischen Aehnlichkeit oder Con-
gruenz hiebei nicht aufser Acht bleibe
dürfen, so treten sie doch bei der Vorstel-
lung des räumlichen Eben-oder Gle-
ichmasses jederzeit hinter des Begriff
der modalen Raumverhältnisse zurück,
wodurch die Symmetrie nitch sowohl
dem Gebiete der Geometrie, als vielmehr
dem der Topologie anheim fallt. Theils in
der Morphologie der organisirten Wesen,
theils und ganz besonders in der Krystal-
lographie spielen die Symmetriegesetze
eine wesentliche Rolle.d

cThe answer is no, much to the dismay of tourists. Today,
named Kaliningrad, there still is no solution to the problem
using a closed path.
dThe symmetry of space and movement finally forms a fertile
material for future topological investigations which can al-
ready be partly built on and beyond the current knowledge on
analysis of situation. Even though the magnitude, measure, the
geometric similarity and congruence are not preserved, as they
occur only during the presentation of the space and can change
at any time with the concept of modal space, whereby the
symmetry concerns both the areas of geometry and topology.
Symmetry laws play an essential role partly in the morphology
of organised beings, and especially in crystallography.

An early example in French language pub-
lications of the use of the word topology was
the translation of Simony’s “Ueber eine Rei-
heneuer Thatsachen aus dem Gebiete der Topolo-
gie” which was mentioned in the Bulletin des
sciences mathématiques at astronomiques, 2e series,
tome 8, no. 2 in 1884 under the title “Sur une
suite de faits nouveaux dans le domaine de la
Topologie” and contained a classification of knots
which can be obtained from a cutting and gluing
construction.

Quick facts: Johann Benedict Listing (1808–
1882), German.

As a child, he had noticeable artistic talent,
which got him benefactors and income much
needed for his financially unstable family.
By the time he entered Gymnasium, he was
more interested in mathematics than art, and
thus studied architecture at the University
of Göttingen as a compromise, taking classes
in many sciences. There he attended lectures
of Gauss, who took Listing as a student and
friend, supervising his PhD thesis on differential
geometry.

Listing became professor of physics a mere five
years after graduating from the same institution.
In 1846, Listing married Pauline Elvers, with
whom he had two daughters, and struggled with
debt. His research was concerned with optics,
magnetism and geometry. He published very
little, yet his work was often unprecedented.
Unfortunately it often got popularised by other
authors, for example his study of the Möbius
band was written years before the work of the
mathematician it is named after.

2.2. The first paper

Vandermonde’s paper “Remarques sur les
problèmes de situation” was named after
the French translation of “analysis situs”, and
received very little recognition. It contained a
modest mathematical study of knots. Here are
the opening words of the paper.

Quelles que soit les circonvolutions d’un
ou de plusieurs fils dan l’espace, on
peut toujours en avoir une expression
par le calcul des grandeurs; mais cette
expression ne seroit d’aucun usage dans
le Arts. L’ouvrier qui fait une tresse, un
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réseau, des noeuds, ne conoit pas par les
rapports de grandeur, mais par ceux de
situation: ce qu’il y voit, c’est l’ordre
dans lequel sont entrelacé les fils.e

The initial work of Vandermonde, in 1771,
was undoubtedly known to Lord Kelvin, the
main investigator of the knotted atoms theory,
as Maxwell had found out about it through the
notebook of Gauss where the linking number
integral was defined. An interesting twist is that
Gauss, who had published results in analysis situs
which were closely related to the work of Vander-
monde, never cited him. There is a possibility that
Gauss only read the Histoire de L’Académie mono-
graph after publishing his work, or, as Lebesgue
also theorised, that Gauss did not find the early
work worthy of recognition since it was based
on examples and application and not strict logic.
Moreover, Gauss is also responsible for the first
combinatorial notation of knots, which in a way,
foreshadowed the duality of abstract algebra be-
tween continuous and discrete spaces.

Quick facts: Théophile Vandermonde
(1735–1796), French.

Vandermonde dedicated his live to the violin
until the age of 35, when the enthusiasm of des
Bertins towards mathematics convinced him to
give its study a try. His career in this field lasted
a short three years, during which he published
four papers in one of the most important journals
of the time, the Histoire de l’Académie des Sciences.
After this, he lost interest in mathematics, and
devoted his time to political questions.

2.3. Enumerations

In the early years of knot theory, the most pop-
ular problem was that of enumerating all knots
up to isotopy. Unfortunately, there are infinitely
many knots, and infinitely many diagrams for
each of them. The first part of the enumeration
problem, not omitting any knot was essentially
solved by Gauss already. Given that each diagram
has a combinatorial expression, it suffices to list

eRegardless of the convolutions of one or many strings in
space, one can always have for them an expression using
calculus; but that expression would be of no use in the Arts.
The worker making a braid, a plaid, knots does not think with
calculus, but is concerned with position. What they see is the
order in which the strings are tangled.

Fig. 4. Illustration from Vandermonde’s paper [46].

all the possible crossing sequences.f However, not
every possible sequence of crossing gives a knot.
Various other notations were used. The work of
Tait is of particular interest, since his status as
a renowned scientist at the time allowed him
to present his work and disseminate his ideas
widely.

Quick facts: Peter Guthrie Tait (1831–1901),
Scottish.

He first distinguished himself as a First Class
student at Peterhouse, Cambridge. Immediately
after graduating in 1852, he became a professor
of mathematics at Queen’s College, Belfast, then
in 1858, took a position of natural philosophy
(that is, physics) professor in Edinburgh. The
complete published work of Tait spreads over
1000 pages, and touches topics as diverse as
chemistry, thermodynamics, and quaternions,
the invention of Hamilton, for whom Tait had a
peculiar fascination.

Tait married Margaret Archer Porter in 1857,
with whom he had four sons. He was appointed
Secretary of the Royal Society of Edinburgh in
1879, and is said to have been particularly pas-
sionate in his work and personal relations, both
as a loyal friend and a lifelong enemy. Tait’s
taste in physical experiments leaned towards
the spectacular prestidigitation, making him a
popular lecturer.

Tait’s original goal was to list all the knots
with up to ten crossings, but never reached his

fFor example, the crossing sequence of the trefoil, Fig. 5(b), is
123123, meaning that if crossings are numbered the first time
they are encountered, they are crossed a second time in the
same order.
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goal [42] having made the false assumption that
all the knots would have alternating diagrams.
His technique is summarised in the three fol-
lowing conjectures, none of which Tait lived to
see proved, even though they now have all been
shown to be true.

Conjecture 1. A reducedg alternating diagram has
minimal crossing number (for the knot it represents).

Conjecture 2. Minimal crossings number diagrams
of the same knot have the same writhe.

Conjecture 3. Alternating diagrams of the same knot
are related by a sequence of flypes.

Here, flype is a scottish word used to denote a
type of move on minimal crossing diagrams. Once
the problem of enumeration had reached 11 cross-
ings, its exponential complexity became cumber-
some and the focus shifted towards finding in-
variants and simplifying isotopies. The work of
Haseman is therefore all the more impressive.

Quick facts: Mary Gertrude Haseman (1889–
∼1960), American [40].

Little is known about Haseman. As an under-
graduate, she attended the University of Indiana,
and spent a year of her graduate studies at John
Hopkins University. Her doctoral supervisor was
C A Scott at Brynn Mawr College, and her thesis,
“On Knots, with a Census of the Amphicheirals
with Twelve Crossings” [19] is one of her rare
published works.

Here is a timeline of enumerations of knots,
from [21]. Here, a stands for alternating, n for
non-alternating, c for amphicheiral, and o de-
noted enumerations which contained omissions.

1876 7 crossings Tait
1885 10 crossings a Tait
1899 10 crossings n Little
1890 11 crossings a o Tait, Kirkman, Little
1914 12 crossings c Haseman
1970 11 crossings n o Conway
1980 11 crossings Caudron
1983 13 crossings Dowker, Thistlethwaite
1994 14 crossings Hoste
1998 16 crossings Hoste, Thistlethwaite, Weeks

2.4. Invariants

The first link invariant in the modern sense is the
linking number of two non-intersecting, regular
curves in R3, Cx, with coordinates (x1, x2, x3) and

gThat is, without any isolated crossings.

(A) The unknot. (B) The trefoil knot. (C) The figure eight knot.

(D) The Hopf link. (E) The Borromean link. (F) The Whitehead link.

Fig. 5. Some knots and links.

Cy, with the corresponding yi coordinates, is de-
fined as
�

Cx,Cy

∑3
i=1 (yi − xi)(dxi+1dyi−1 − dxi−1dyi+1)

4π(
∑3

i=1 (yi − xi)2)3/2

where the indices are taken modulo 3 in the range
{1, 2, 3}.

It was initially defined by Gauss [16] during
work on electromagnetism in 1833, but most of
the work on this, and its application to knot the-
ory was done by Boeddieker. The linking number
has the ability to distinguish the Hopf link from
the unlink of two components (the disjoint union
of two unknots).

Listingh was the first to consider the possibility
of creating an exhaustive table of knots, ordered
by crossing number, and even considered braids,
as inspired by his work on helices. However, he
preferred the representation of knots as projec-
tions of smoothly embedded circles in space. He
constructed a function on knot diagrams taking
as value a polynomial in two variables. However,
that function was far from an invariant as it
was undefined for many diagrams, it could take
different values on different diagrams of the same
knot and failed to distinguish some inequivalent
knot diagrams.

However, Listing’s polynomial, and the efforts
to find its shortcomings seemed to have shaped
the future of knot theory as the quest for a com-
plete and computable invariant.

It was the work of Poincaré on fundamental
groups of complexes which provided the much
needed invariants. Dehn and Heegaard noted that
combinatorial representations were simpler than
diagrammatic ones, but they made computations
of invariants, such as the Gordian (unknotting)
number harder.

hWho gave his name to the unique four crossings knot in
Fig. 5(c).
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Quick facts: Poul Heegaard (1871–1948), Dane.
As a teenager, Heegaard was pushed towards studying mathematics, even though he had never
mastered mental arithmetics, and had inherited from his late father a passion for astronomy. He
obtained a master’s degree from the University of Copenhagen in 1893 on algebraic curves. After
which, he travelled abroad for a year, where he met Klein, who introduced him to topology. In 1896,
Heegaard married Johanne Magdalene Johansen, and three years later, defended a PhD thesis which
contained a counterexample to an early incarnation of Poincaré’s conjecture.

Some of his main works were a book in astronomy, and a survey article, joint with Dehn, laying the
ground for combinatorial topology. Until 1910, Heegaard had supported his six children with teaching
at schools. Then, he became chair of mathematics at Copenhagen University, but resigned seven years
later, moving on to found the Norwegian mathematical society.

In fact, it was not until Reidemeister’s pub-
lication of the first book on knot theory in 1932
that knot isotopies were qualified in a workable
way. Instead of relying entirely on intuition of
how a string might move in space, Reidemeister
proposed a set of three unoriented moves, deal-
ing with neighbourhoods of one, two and three
crossings respectively, which generate any knot
isotopy. The third Reidemeister move is of special
interest because it happens to be a manifesta-
tion of the Yang–Baxter equation, an important
cornerstone of statistical mechanics [16]. Roughly
speaking, this equation is a generalisation of the
identity in the symmetric group: (1 2)(2 3)(1 2) =
(2 3)(1 2)(2 3) = (1 3).

Quick facts: Kurt Werner Friedrich
Reidemeister (1893–1971), German.
Richard Dedekin was a close friend of
Reidemeister’s parents, and influenced him for
many years, leading him to study mathematics
at university. However, his education was
interrupted by World War I, where he had
to serve all four years. In 1920, he took the
examination to become a Gymnasium teacher,
the mathematical part of which he passed
with distinction. Instead of going to teach,
Reidemeister became the assistant of Hecke,
who would be his doctoral supervisor, for a
dissertation about number theory.

Reidemeister quickly started publishing ge-
ometry work, and became associate professor
at the University of Vienna in 1923, where he
met and quickly married Elisabeth Wagner. They
then moved to Königsberg, where Reidemeister
took a chair position. There he published many
books, on knot theory, geometry and algebra.
However, he was forced to leave in 1933 due to
his opposition to the rising Nazi party. Moving
to Rome with a new, untrusting attitude, he
spent the rest of his life working at various
universities, publishing profusely, and keeping
his political ideas private.

2.5. Definition of knot theory

As interesting and beautiful as knot tables are,
they turn out to be merely a tool in this topolog-
ical tale. In fact, the initial view of knots as ge-
ometric objects is less powerful than the modern
definition:

Definition. Knot theory is the study of non-trivial
embeddings (that is, knotted) of manifolds of codimen-
sion two in Sn through algebraic and combinatorial
methods.

A knot is such a connected, one-dimensional
manifold. A link is a union of knots which may
be inseparable. The n-dimensional generalisations
are called n-knots. The case we are usually con-
cerned with [6] is S1 ⊂ S3, but long knots, (R1 ⊂ S3)
are also studied, and very recent developments
include S1 ⊂ Σ × I, knots in thickened surfaces.

Yet, let us return to the base case. K ≡ S1 ⊂
S3 is a ribbon knot if it bounds a disk with only
ribbon singularities. A ribbon singularity is a self
intersection in the disk such that its preimage is
the disjoint union of a segment contained in the
interior of the disk and one with endpoints on the
boundary of the disk.

Adding a time dimension, it is possible to re-
solve the singularity by perturbing the disk along
t. Then, K bounds a disk without singularities in
S3 × I. Knots with this latter property are called
slice, and correspond to the intersection of a 2-
manifold Σ ⊂ R4, with a hyperplane. “Is every
slice knot ribbon?” this question is called the Slice-
Ribbon conjecture and has been open ever since
those notions were defined.

3. Repercussions

3.1. Fox free differential calculus

The existence of non-trivial knots, from a contem-
porary topological point of view was only proved
in 1906 [16], by Tietze’s work with fundamental
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Fig. 6. Ribbon knot with singularities [37].

groups. He considered the complement of a thick-
ened embedding (solid torus) of a knot in the
three-dimensional sphere, S3. The fundamental
group of this structure is called a knot group,
and it is amongst the strongest invariants devel-
oped. When paired with the peripheral structure,
which describes the boundary of the manifold, it
becomes a complete knot invariant.

Unfortunately, the problem of identifying
equivalent group presentation is maybe even
harder than that of knot classification, since the
knot group and peripheral structure are but an
elaborate presentation of a Gauss word for a knot.
The unwieldyness of this invariant is what made
Alexander’s polynomial so important. Introduced
in 1928, as the determinant of a matrix created
from the way the arcs interacted around each
crossing, it is denoted ∆K(t), for some knot K, and
variable t.

Many of the computations one can do for a
knot are based on the idea of a skein relation.
Considering the knot to be a way of connect-
ing crossings together lead to asking about the
relations between knots which differed only at
a single crossing. Given four strands in a knot
diagram L, there exists four waysi they could be
connected, denoted L+, L−, L0 and L∞, as per Fig. 7.

The connected sum, which was mentioned in
the section on modular art, demonstrates some
of the good behaviour of Alexander’s eponymous
polynomial. In fact, it is multiplicative under this
operation. Unfortunately, this is not a complete in-
variant, as it takes value 1 on some knots different
from the unknot,j nor does it distinguish between
mirror images. It was the first invariant to be
presented in the form of a skein relation, that is a
linear relation between the polynomials of knots
which were identical except for one crossing. Al-
though that relation was present in the original

iIn fact, there exists a fifth one, arising from a field known as
virtual knot theory, which is unfortunately beyond the reach
of this work.
jThe Alexander polynomial of the unknot has to be one by the
multiplicative property, since any knot is the connected sum
of itself with the unknot.

Fig. 7. Crossings and resolutions assuming the strands are
oriented towards the right in the first two cases [39].

paper, the matrix approach remained the most
popular until Conway’s rediscovery.

For over 20 years, the true nature of Alexan-
der polynomial remained conjectural at best.
Eventually, a third definition for the polynomial
emerged, where the matrix arose as the deriva-
tives, in a certain sense, of the relations in a
presentation of the knot group. The importance
of free differential calculus is best explained the
words of its creator, Fox [11] himself.

As the calculus developed, it became
increasingly clear that free differentiation
is the fundamental tool for the study of
groups defined by generators and relations.
It is closely connected with several of
the significant modern developments of
algebra and topology and, in fact, reveals
hitherto unobserved relations between
them.

After the algebraic revolution, which gave
invariants, came a computer revolution which
yielded computability. In 1970, Conway revisited
and completed knot and link tables, by comput-
ing many invariants with the aid of computer
programs.

Quick facts: John Horton Conway (1937– ),
British.

At the age of eleven, Conway was already
stating that his goal in life was to become
a mathematician. He obtained a B.A. from
Cambridge in 1959, and a PhD from the same
institution after five years of research in number
theory. Immediately after graduating, he took a
position as a lecturer.

Conway’s mathematical contributions tend to
be regarded as bizarre, as his interest in group
theory and the game of Go merged towards the
invention of surreal numbers, the Game of Life,
and Monster groups. Since 1986, he has been
working at Princeton University.
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3.2. A coincidental polynomial

The P-polynomial was introduced in 1985 in
a note, [12] by Hoste, Ocneanu, Millett, Freyd,
Lichorish, and Yetter, whose initials form the
acronym, HOMFLY, often used to name the two-
variable polynomial. The large number of coau-
thors on that paper was the result of a surprising
coincidence. Originally, four separate papers were
submitted to the American Mathematical Society,
within a very short time frame, and describing
the very same polynomial. It was the editors’
suggestion that all six authors collaborate together
to publish the result.

Simultaneously, Przytycki and Taczyk devel-
oped the same invariant [16]. Having submitted
their independent work only two years later, their
contribution is only sometimes acknowledged by
the use of the HOMFLY-PT acronym.

This polynomial is notable for its ability to
specialise, by changes of variables to both the
Alexander, and the Jones polynomial.k Similarly
to the Jones polynomial, and its unnormalizedl

relative, the Kauffman bracket, the P-polynomial
can be computed from a state model formula
based on the L0 and L∞ smoothings.

3.3. Statistical mechanics

Statistical mechanics is the study of equilibrium
in mechanical systems. It often focuses on the
second law of thermodynamics, that entropy in
a closed system is constant, but lacks a unifying
theoretical base. Instead, statistical mechanics is
trying to prove things such as why the Poincaré
lemma,m are not observable. To do so, one as-
signs to mutually exclusive states of a system a
probability of being observed, and considers the
expected behaviour over time [13].

Jones was awarded a Fields’ Medal in 1990,
for relating the previously separate fields of knot
and braid theories, through their respective in-
teractions with statistical mechanics. The 1986

kThe Jones polynomial is briefly discussed in the next section.
To see how it is defined, see Jone’s recent survey [23], which
takes multiple approaches towards the invariant.
lIn fact, the Kauffman bracket can be considered to be an
invariant of the equivalence class of knot diagrams where
all one of the Reidemeister moves are allowed. These classes
are called framed knots, and model in an effective way the
behaviour of a knotted belt, where a Möbius band would not
be considered equivalent to an annulus.
mWhich would predict that indeed, the original cloud of tea
should eventually reform in a teacup.

article by Jones introduced his polynomial valued
knot invariant, which detects handedness in some
knots. The quest for a non-trivial knot with trivial
Jones polynomial is open to this day, suggesting
that the polynomial detect the unknot.

The Jones polynomial was instrumental in the
proof of Tait’s first and second conjectures in
1987, independently by Kauffman [27], Murasugi
[35, 36], and Thistlethwaite [43, 44].

This invariant inspired two entirely distinct
generalisations. The first one is the one dis-
cussed in the previous subsection. The second one
is called the F-polynomial, and was discovered
by Kauffman. Unlike the skein relations for the
Alexander polynomial, Kauffman’s work is based
on a state model which express each knot diagram
as a sum of the diagrams that can be obtained
from smoothing each crossing as either L0 or
L−. The F-polynomial is a two-variable version
of the bracket polynomial. Finally, Tait’s third
conjecture was proved using that polynomial in-
variant by Menasco and Thistlethwaite in 1991
[33].

Kauffman is a major player in building the
relations between knot theorists and physicists.
In 1991, he published the book Knots and Physics,
which paved the way for the Series on Knots and
Everything, of which many books are referenced
herein.

3.4. Braid theory

A braid is an element in the group consisting
of finite loops in a punctured disk, up to ho-
motopy. There is thus one braid group for each
natural number n, called Bn and correspond-
ing to the fundamental group of the disk with
n punctures. The unital difference comes from
the original interpretation of the braids as ele-
ments of the fundamental group of the space of
non-degenerate polygons in R2. However, clock-
wise loops around each puncture can be identi-
fied with a generator σi, while counterclockwise
ones are denoted σ−1

i , and representing words as
stacks of the generating tangles gives the braided
visual.

The relations that hold for this group are
quite natural and usually called invertability
(σiσ

−1
i = 1), far commutativity (σiσj = σjσi when-

ever |i − j| ≥ 2), and the appropriate form of the
Yang–Baxter equation (σiσi+1σi = σi+1σiσi+1).
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Quick facts: Emil Artin (1898–1962), Austrian.

Until the age of sixteen, Artin was mostly
interested in music and chemistry, and had no
particular talent for mathematics. His university
studies were briefly interrupted by WWI, but in
1919, he started at the University of Leipzig in
mathematics. In a mere two years, he obtained
a doctorate, under the supervision of Herglotz.
He then became Privatdozent at the University
of Hamburg, where he proved a passionate
lecturer of mathematics and physics.

Artin was a particularly active researcher,
solved one of Hilbert’s problems, made wild
but accurate conjectures, developed the theory of
braids and greatly advanced many other abstract
algebra topics. After marrying Jewish Natalie
Jasny in 1929, his focus slowly turned towards
his family. Jasny’s religion forced the family
to move to the USA in 1937, where Artin de-
voted his life to supervising students and writing
books.

There is a natural map from braids to links,
obtained by taking their closures, that is, identi-
fying the top first strand from the left with the
bottom first strand on the left, and so on. The
kernel of this map is described by the Markov
theoremn stating that two braids close to the same
knot if and only if they are related by a chain of
conjugation and stabilisation moves.

As braids and an intrinsically algebraic object
and closure is a map onto the set of knots, this ap-
proach contributed to making algebraic methods
more popular than combinatorial ones.

In one of Artin’s original papers, [2], establish-
ing braid theory, he paints a vivid portrait of the
complexity of hand calculations which has to be
shared.

Although it has been proved that every
braid can be deformed into a similar nor-
mal form the writer is convinced that any
attempt to carry this out on a living per-
son would only lead to violent protests
and discrimination against mathematics.
He would therefore discourage such an
experiment.

He also coined the term “enormously simple” and
was not one to fall in the common trope of calling
something trivial lightly.

nOf A A Markov Jr, son of the mathematician who gave his
name to the matrix chains.

Quick facts: Joan Sylvia Lyttle Birman
(1927– ), American.

In primary school, Birman was fascinated with
patterns, and became interested with geometry
in high school. Her family pushed her to
pursue academia, hence she took mathematics
in college, graduating with a BA in 1948. Until
1961, she worked in industry, and founded
a family with physicist Joseph L Birman.
Then, she took up graduate studies at the
Courant Institute, finding an interest in pure
mathematics.

Her doctoral supervisor was Magnus, and
the work that she started as a thesis, on braid
groups and the mapping class groups was only
the first stone in a text that would become an
instant classic. Birman worked at the Stevens
Institute, Princeton and Barnard College, retiring
in 2007, after an award winning career, which
even included creating a prize in honour of her
late sister.

3.5. Knots for everything

As knot theory started as an attempt to find a
theory of everything, a simple scheme that would
explain the nature of the universe itself, it so
happened that, as false as the first idea was,
the current theory was greatly inspired by the
independent development of knot theory over
two centuries.

Matter is made of atoms, which themselves
are divided in electrons,o protons and neutrons.p

The Standard Model is the description of the 12
elementary particles: quarks (up, down, strange,
charm, top, bottom), electron, muon, tauon, and
their partnered neutrinos, the last six collectively
known as leptons. And their interactions through
the four fundamental forces: gravity, electromag-
netism, weak and strong nuclear forces. The forces
are realised by an exchange of particles, respec-
tively the graviton, photon, W or Z boson and
the gluon.q

The theory of gravity at a small scale is not
well explained by the standard model. String
theory proposes that all the fundamental particles
are made of “strings”. Even within the Stan-
dard Model (SM), more than four dimensions of

oA type of lepton, hence elementary.
pBoth composed of quarks.
qCollectively known as bosons.
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spacetime are technically needed: particles not
only have a position and a velocity, but also a
mass, electric charge and spin.

The mathematical background of the SM is
quantum field theory, and this allows consistency
between quantum mechanics and the special the-
ory of relativity. However, general relativity can-
not be derived within this framework. Strings can
be closed or open, and their vibration modes are
seen as different masses and spins, hence describe
the elementary particles of the standard model,
fundamentally including the graviton, giving a
theory of quantum gravitation.

The first string theory was called Bosonic
String Theory, because it didn’t include the
fermions. These can be accounted for by intro-
ducing supersymmetry, which yields from BST
three consistent superstring theories. Combining
them together, two heterotic string theories have
been formulated. Note that when string theory
is described to be 10-dimensional, six of these
dimensions are in fact compact.

It is only in 1995 that American physicist
Edward Witten proposed a solution to this branch-
ing: seeing strings as slices of a larger manifold.
He called this M-theory. The visual, of slicing a
two-dimensional manifold with a hyperplane to
obtain a one-dimensional object should remind

you of the slice knot construction. This could have
been entirely coincidental, had Witten not been a
leading knot theorist.

Quick facts: Edward Witten (1951– ),
American.

Witten’s first interest was in history and
linguistics, in which he obtained a bachelor
thesis from Brandeis in 1971. Without doubt
encouraged by his theoretical physicist parent,
Witten then attended Princeton for a Master’s
degree in applied mathematics, and a PhD in
physics under the supervision of D Gross.

Witten has held positions at many renowned
American university, while working on reuniting
theoretical physics with geometry and abstract
algebra. In 1990, he became the first physicist to
be awarded a Fields Medal, a crowning achieve-
ment amongst an impressive number of prizes
and recognitions. He is currently married to
fellow physicist and Princeton professor Chiara
Nappi.

Dijkgraaf summarises well the relation be-
tween many of the notions that have been pre-
sented in the following table, where α′ denote the
stringyness and λ the quantum correlation.

λ = 0 λ > 0

α′ > 0 conformal field theory, M-theory, string fields,
strings, quantum cohomology branes, non-commutative geometry

α′ = 0 quantum mechanics, particles, quantum field theory,
combinatorial knot invariants fields, low-dimensional manifolds

3.6. Molecular biology

DNA is a long molecule, formed in an oriented,
flexible double helix which when considered
as one-dimensional, takes three configurations:
catenated, super coiled or knotted. These config-
urations are obtained when various enzymes act
on the protein. Topology has been applied to the
study of DNA knotting and recombining. Exper-
iments using gel electrophoresis can calculate the
linking number and writhe of the knots formed
by DNA. Calculating the action of enzymes
on those topological invariants allows one to

understand the chemical pathway better. How-
ever, the reason for which molecules for knots
is unknown. The current hypothesis is that this
increases the molecule’s stability. The reference
[34] is a short survey article about the applications
of knot theory in the study of DNA, written in a
style accessible to mathematicians.

The history of the discovery of the structure
of DNA is a long and winding tale. Like every
protein, it folds and coils on itself, obscuring the
base helix structure. Some details of early DNA
research can be found on the following biography,
of one of its sometimes forgotten actors.
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Quick facts: Rosalind Franklin (1920–1958),
British [3].

Franklin excelled in sciences in school, and was
strong headed enough to oppose her family’s
wishes, and dedicate her life to science at the
age of 15. She graduated from Cambridge in
1938, and while working in industry, developed
gas masks, published papers, and earned a PhD
in Physical Chemistry from Cambridge.

In Paris, she worked with J Mering on X-ray
chromatography, a science that she would bring
back to England and use to discover the dou-
ble helix configuration of DNA. However, her
work was impeded by sexism, and stolen by a
fellow researcher who would carry on to win a
Nobel Prize. Her later work instituted the field of
virology.

3.7. Topology of the mind

Psychoanalysis is a theory and therapy developed
by Sigmund Freud. He believed that the problems
of the conscious mind were caused by the un-
conscious and that exposing them, would lead to
solutions.

For Lacan, the mind of humans have three
components: the Real, the Symbolic and the Imag-
inary. He explained the dynamics of desire by
modelling each part as a solid torus, since they
each have a single void, and arranged them to
form Borromean rings, as they each superpose the
other two: R ⊃ S ⊃ I ⊃ I ⊃ ....

Quick facts: Jacques-Marie Émile Lacan, (1901–
1981), French [4].

Raised in a catholic family, Lacan left the church
as a teenager, more interested in the works of
Leibniz and Spinoza. During his time at med-
ical school, he frequents both surrealistsa and
members of the action françcaise.b In 1932, he
obtained a doctorate in psychiatry and an MD.

Lacan’s views would be strongly contested at the
time, and, having created a chasm in the french
psychology society, he turned to topology in the
70s, eventually defining himself a linguist, and
died of a cancer he refused to cure.
aArtistic and political movement advocating for the impor-
tance of dreams, the subconscious, and automatism.
bA nationalist, right-winged organisation.

Some of his other work concerned the three-
twist Möbius band, which he correctly states to

Fig. 8. Notes from Lacan’s last seminar.

be spanning the trefoil (as a surface bounded by
it without singularities, not as a ribbon, which can
only be a disk), and a generalisation of the Bor-
romean rings to five circles, that would allow him
to further his theory of the topology of the mind.
However, his requirement for this link would be
that removing any two circles should leave the
other three unlinked. However, no such link exists,
as the Brunnian property is that removing any one
ring frees the others (realisable with any number
of component), and the Borromean property is
such that any two rings are unlinked (realisable
only with an odd number).

Philosophical or psychological questions have
a history of motivating mathematical research that
date back to Greek antiquity, but since the separa-
tion of foundations of mathematics as a topic in its
own right, the relation has been abandoned. This
link that Lacan was looking for might be one of
the last examples of such a question.

4. Conclusion

In this text, the importance of knots in the tech-
nology, science, and arts has been presented.
Simultaneously, the development of pure mathe-
matics has allowed people to formalise knot the-
ory, and has contributed to all the fields where
knots are important.

Through the meanderings of the development
of knot theory as a stand alone field of mathemat-
ics, many techniques were discovered which con-
tributed to abstract algebra, mathematical physics,
cryptography, and algebraic topology. The classi-
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fication of knots in itself is an important catalogue
of subtly different manifolds.

Let us here return to this essay’s main question.
What is the motivation for the study of knot
theory? It is impossible to question every knot the-
orist on the planet, and one can only consider the
broad stokes of the research fields. Some of the ap-
plications are used to answer the oldest questions
of humanity. Where does the world come from?
What is matter made of? How did Life come to be?
Those are all motifs found in foundational texts of
cultures around the world. Respectively, statistical
physics, M-theory, and molecular biology each
provide a hypothesis which could answer those
questions.

So, if knot theory itself is no longer a quest for
the Ultimate Answer [1], it remains an inspiration
for people seeking it, and in some people’s opin-
ion, is a part of the Answer itself.
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