
Memory Consistency for
Parallel Systems: A Reformulation

Without Global Time
Jonathan Z Y Hay and Y C Tay

December 2016, Volume 6 No 2 1

Asia Pacific Mathematics Newsletter

Abstract. Cross-chip latencies now make multicore ar-
chitectures resemble distributed systems. The design of
distributed protocols is notoriously error-prone, partic-
ularly when their analysis is based on the use of global
time. Classical memory consistency models for parallel
programming, such as linearisability, uses such a global
ordering. This talka examines the reformulation, with-
out global time, of these consistency models.

1. Introduction

It is now common for a processor chip to have
multiple cores and caches. Furthermore, current
processor speeds are so fast that it takes many
cycles for a signal to travel across a chip. These
make a chip increasingly resemble a distributed
system.

The design and analysis of distributed pro-
tocols is notoriously prone to error. In trying to
understand why this is so [4], we learnt two
lessons.

The first is that many errors originate from
our habit to reason (often subconsciously) using
global time, or some global interleaving order of
all events in the system, i.e. to think sequentially
about a parallel execution.

The theory (definitions and proofs) for dis-
tributed protocols should instead rely only on
partial orderings of the events. This applies to the
theory for parallel processing as well, now that
they behave like a distributed system.

In the case of consistency models for shared
memory, the classical theory starts with a total
order of all events in the system. Two well-known
models are sequential consistency and linearis-
ability, and the need for global time distinguishes
these two definitions.

aThis was a keynote address given at the National Confer-
ence on High Performance Computing & Simulation, held
at the National Institute of Science and Technology, Berham-
pur, India, in January 2013. It is reprinted here with the
kind permission of Prof. Motahar Reza, who organised the
conference.

2. Sequential Consistency

For notational simplicity, we assume every pro-
cess (or thread) executes a totally ordered se-
quence of operations, and the process order ≺
is the union of these total orders. Following
Steinke and Nutt [3], the only operations are reads
and writes, and each write generates a unique
value.

Let wx
B(v) denote the operation where process

B writes value v to variable x; similarly, rx
B(v)

denotes B reading value v of x. We say rx
C(v) reads

from wx
B(v), denoted wx

B(v) �→ rx
C(v) if and only if

the value read by C was written by B. We call
≺ ∪ �→ an operation history.

A total order < on the operations is legal if
and only if whenever wx

B(v) < rx
C(v), there is no

wx
A(u) such that wx

B(v) < wx
A(u) < rx

C(v).
For a partial order ≺ on operations,

SerialView(≺ ) denotes a legal total order < that
preserves ≺ , i.e. ≺ ⊆< .

An operation history is sequentially consis-
tent if and only if ∃ SerialView(≺ ).

Steinke and Nutt used such a formal-
ism to express several other correctness cri-
teria — PRAM consistent, processor consis-
tent, causally consistent, etc. — all without
using global time. Can linearisability be similarly
defined?

Linearisability is fundamentally different from
sequential consistency in that it is a local property,
i.e. the operation history is linearisable if and only
if it is linearisable for every object. Sequential
consistency is a weaker criterion that does not
have such a property.

Note that ∃ SerialView(≺ ) does not include
the reads from order �→ defined on objects.
We can further define a data order ≺x for
each variable x, as follows: If ox

C(u) ≺ rx
C(v),

rx
C(v) reads from wx

B(v) and u � v, then
ox

C(u) ≺x wx
B(v).



December 2016, Volume 6 No 22

Asia Pacific Mathematics Newsletter

Let ≺ be the transitive closure of ≺ ∪ �→
∪ (
⋃

x ≺x ). An operation history is data consis-
tent if and only if ∃ SerialView(≺ ).

Theorem. An operation history is data consistent if
and only if it is sequentially consistent.

In other words, adding �→ and ≺x to ≺ does
not give a correctness criterion that is stronger
than sequential consistency.

3. Linearisability

Since we assume a process B executes se-
quentially, we can totally order events at B
with some local B-time. An operation ox

B(v)
thus spans a B-time interval between two
events: its invocation Inv(ox

B(v)) and the response
Resp(ox

B(v)). Current cross-chip latencies make
such intervals nontrivial, so operations are not
atomic.

Classically, linearisability is defined by starting
with a global total order (using “real time” [2])
of all events and extracting a partial order on
operations from that total ordering on events.
Can linearisability be defined without such a total
ordering?

Define a causal order ≺ on events thus: For
two events fB and f ′C at processes B and C, fB ≺ f ′C
if and only if fB can causally affect f ′C.

For B = C, this means fB happens before f ′B in
B-time; for B � C, this means a signal sent at B-
time for fB can travel across the chip and reach C
at some C-time before f ′C.

We call this causal order ≺ an event history.
An event history ≺ induces an operation

history ≺ where ox
B(u) ≺ oy

C(v) if and only if
Resp(ox

B(u)) ≺ Inv(oy
C(v).)

For an event history ≺ , the process subhis-
tory <B is the restriction of that order to events
for process B; this restriction yields a total or-
der since we assume a process is a sequence of
operations.

Similarly, the object subhistory ≺x is the re-
striction of that order to events for object x.

The standard definition of linearisability uses
a total order < (instead of ≺ ) imposed by global
time. Two total orders < and < ′ are equivalent,
denoted < ≡< ′, if and only if <B =<

′
B for every

process B.
< is sequential if and only if the operation

history that it induces is a total order. A sequential

< is legal if and only if the operation history that
it induces is legal.

Classically, < is linearisable if and only if
there is some legal sequential < ′ such that < ≡< ′

and ≺ ⊆≺ ′, where ≺ and ≺ ′ are the operation
histories induced by < and < ′ respectively.

One can prove that < is linearisable if and
only if ≺x is linearisable for every object x; this is
the local property mentioned in Sec. 2.

Golab has proposed two definitions of linearis-
ability that do not use real time [1]. Using our
notation, his definitions can be stated as:

(1) ≺ is ∃-linearisable if and only if there
is a total order < such that ≺ ⊆< and
< is linearisable.

(2) ≺ is ∀-linearisable if and only if for
every total order < such that ≺ ⊆< , <
is linearisable.

Golab conjectured that the first definition is not a
local property, but the second definition is.

We have found counterexamples to show that
∃-linearisability is indeed not local, so it is ar-
guably not the right generalisation of linearisabil-
ity. We have also proven Golab’s conjecture for
∀-linearisability:

Theorem. ≺ is ∀-linearisable if and only if ≺x is ∀-
linearisable for every object x.

4. Conclusion

Although ∀-linearisability is a local property, we
think it is also not the right generalisation. Our
skepticism is based on the second lesson that
we learnt from distributed computing, namely:
Processes and objects are asymmetric in their
properties, so it makes a difference whether a
definition is in terms of events at processes or at
objects.

The classical definition for linearisability is in
terms of events that model the non-atomicity of
operations, so the events are all local to processes.
However, there are actually four events associated
with each ox

B(v): Inv(ox
B(v)) at B, the event at x

for receiving the invocation, the event at x for
sending the response, and Resp(ox

B(v)) at B. Like
the interval between Inv(ox

B(v)) and Resp(ox
B(v)),

the delay between the receive and send events
at x may also be nontrivial (consider, say, a cache
miss).



December 2016, Volume 6 No 2 3

Asia Pacific Mathematics Newsletter

2

Let ≺ be the transitive closure of ≺ ∪ �→∪ (⋃x ≺x ). An operation history is data consis-tent if and only if ∃ SerialView(≺ ).

Theorem. An operation history is data consistent ifand only if it is sequentially consistent.

In other words, adding �→ and ≺x to ≺ doesnot give a correctness criterion that is strongerthan sequential consistency.

3. Linearisability

Since we assume a process B executes se-quentially, we can totally order events at Bwith some local B-time. An operation oxB(v)thus spans a B-time interval between twoevents: its invocation Inv(oxB(v)) and the responseResp(oxB(v)). Current cross-chip latencies makesuch intervals nontrivial, so operations are notatomic.Classically, linearisability is defined by startingwith a global total order (using “real time” [2])of all events and extracting a partial order onoperations from that total ordering on events.Can linearisability be defined without such a totalordering?Define a causal order ≺ on events thus: Fortwo events fB and f ′C at processes B and C, fB ≺ f ′Cif and only if fB can causally affect f ′C.For B = C, this means fB happens before f ′B inB-time; for B � C, this means a signal sent at B-time for fB can travel across the chip and reach Cat some C-time before f ′C.We call this causal order ≺ an event history.An event history ≺ induces an operationhistory ≺ where oxB(u) ≺ oyC(v) if and only ifResp(oxB(u)) ≺ Inv(oyC(v).)For an event history ≺ , the process subhis-tory <B is the restriction of that order to eventsfor process B; this restriction yields a total or-der since we assume a process is a sequence ofoperations.Similarly, the object subhistory ≺x is the re-striction of that order to events for object x.The standard definition of linearisability usesa total order < (instead of ≺ ) imposed by globaltime. Two total orders < and < ′ are equivalent,denoted < ≡< ′, if and only if <B =< ′B for everyprocess B.< is sequential if and only if the operationhistory that it induces is a total order. A sequential

< is legal if and only if the operation history thatit induces is legal.Classically, < is linearisable if and only ifthere is some legal sequential < ′ such that < ≡< ′and ≺ ⊆≺ ′, where ≺ and ≺ ′ are the operationhistories induced by < and < ′ respectively.One can prove that < is linearisable if andonly if ≺x is linearisable for every object x; this isthe local property mentioned in Sec. 2.Golab has proposed two definitions of linearis-ability that do not use real time [1]. Using ournotation, his definitions can be stated as:

(1) ≺ is ∃-linearisable if and only if thereis a total order < such that ≺ ⊆< and< is linearisable.(2) ≺ is ∀-linearisable if and only if forevery total order < such that ≺ ⊆< , <is linearisable.

Golab conjectured that the first definition is not alocal property, but the second definition is.We have found counterexamples to show that∃-linearisability is indeed not local, so it is ar-guably not the right generalisation of linearisabil-ity. We have also proven Golab’s conjecture for∀-linearisability:

Theorem. ≺ is ∀-linearisable if and only if ≺x is ∀-linearisable for every object x.

4. Conclusion

Although ∀-linearisability is a local property, wethink it is also not the right generalisation. Ourskepticism is based on the second lesson thatwe learnt from distributed computing, namely:Processes and objects are asymmetric in theirproperties, so it makes a difference whether adefinition is in terms of events at processes or atobjects.The classical definition for linearisability is interms of events that model the non-atomicity ofoperations, so the events are all local to processes.However, there are actually four events associatedwith each oxB(v): Inv(oxB(v)) at B, the event at xfor receiving the invocation, the event at x forsending the response, and Resp(oxB(v)) at B. Likethe interval between Inv(oxB(v)) and Resp(oxB(v)),the delay between the receive and send eventsat x may also be nontrivial (consider, say, a cachemiss). A proper reformulation of consistency for
shared memory should therefore model events
at both processes and objects, and relate them
through a partial order defined with local times
for all events.

Acknowledgement

We thank Wojciech Golab and Seth Gilbert for
their helpful comments.

References

[1] W. Golab, Relativistic linearizability (Private communica-
tion through Seth Gilbert), Feb. 2012.

[2] C. Shao, J. L. Welch, E. Pierce and H. Lee, Multiwriter
consistency conditions for shared memory registers, SIAM
J. Comput. 40(1) (2011) 28–62.

[3] R. C. Steinke and G. J. Nutt, A unified theory of shared
memory consistency, J. ACM 51(5) (2004) 800–849.

[4] Y. C. Tay and W. T. Loke, On deadlocks of exclusive AND-
requests for resources, Distrib. Comput. 9(2) (1995) 77–94.

Jonathan Hay Zhi Yi
National University of Singapore
jonathanhayzhiyi@gmail.com

Jonathan Hay graduated from National University of Singapore in 2012 
with BSc (Hons) in Applied Mathematics and BComp (Hons) in Computer 
Science. He is currently working as a server-side developer in the soft-
ware industry.

Y C Tay
National University of Singapore
mattyc@nus.edu.sg

Y C Tay received his BSc degree from the University of Singapore and PhD 
degree from Harvard University. He is a professor in the Departments of 
Mathematics and Computer Science and a Resident Fellow in Tembusu 
College at the National University of Singapore. His research interests 
include performance modeling, distributed protocols and database 
systems.


