
Arrange three circles so that every pair is mutu-
ally tangent. Is it possible to add another tan-
gent to all three? The answer, as described by
Apollonius of Perga in Hellenistic Greece, is yes,
and, indeed, there are exactly two solutions [12,
Problem XIV, p.12]. The four resulting circles are
called a Descartes quadruple, and it is impossible
to add a fifth. There is a remarkable relationship
between their four curvatures (inverse radii):

2(a2 + b2 + c2 + d2) = (a + b + c + d)2.

René Descartes is first credited with this obser-
vation, in correspondence with Princess Elizabeth
of Bohemia in 1643 [4, p.49]. Nobel prize winning
radiochemist Frederick Soddy published his own
rediscovery in Nature, shortly before World War
II, in the form of a poem [15], which begins:

For pairs of lips to kiss maybe
Involves no trigonometry.
This not so when four circles kiss
Each one the other three . . .

If we choose three mutually tangent circles of in-
teger curvatures a, b and c, then the two solutions
of Apollonius correspond to the two solutions to
the resulting quadratic equation in d. If one of
these is integral, so is the other. Thus we discover
that, if we begin with a Descartes quadruple of
integer curvatures, we can add a new circle of
integer curvature. This quintuple contains several
fresh quadruples of integer curvatures, and so
follow other new integral circles, in the same
manner. Continuing in this way forever, we create
an integral Apollonian circle packing, an infinite
fractal arrangement of disjoint and tangent circles
with integer curvatures, as in Fig. 1.

Related circle arrangements have appeared for
centuries, from Japanese sangaku temple art [10]
to Vi Hart’s popular YouTube videos [8]. But it
is only in the past decade or two that number
theorists have begun to answer the question of

Fig. 1. In the top row, the first few stages of the iterative
construction of an Apollonian circle packing. At bottom, an
approximation of the finished packing, with curvatures shown.
The outer circle has curvature −6, the sign indicating that its
interior is “outside.”

which curvatures appear in an integral Apollo-
nian circle packing. It is conjectured [5, 6] that
the only obstructions are local: in other words,
in a given packing, any sufficiently large integer
not ruled out by a specific congruence restriction
modulo 24 will appear. This question has become
a demonstration piece for the newly emerging
theory of thin groups, and sophisticated tools
have been brought to bear on its partial solution:
namely, that a density one collection of such
integers appears [1, 2].

Momentarily putting aside the geometry, the
question is a recursive one: given a Descartes
quadruple of curvatures a, b, c, d, we obtain a new
integer d′ satisfying

d′ + d = 2(a + b + c).

The much more classical question of the values
represented by a quadratic form is very similar. If
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Fig. 2. A portion of Conway’s topograph. Each region is labelled
by an element of Q̂. The parallelogram law, with respect to the
central wall, reads f ( − 1, 1) + f (1, 1) = 2(f (1, 0) + f (0, 1)).

f is a quadratic form, then the parallelogram law
states

f (u + v) + f (u − v) = 2(f (u) + f (v)).

In this way, we can generate the primitive values
of an integral binary quadratic form recursively
from its values on any triple of primitive vectors
u, v, u + v ∈ Z2.

This observation led Conway to study these
values in visual form on a topograph capturing
the recursion [3]. Primitive vectors in Z2 (those
with no common factor between their coordi-
nates), considered up to sign, are in bijection with
Q̂ := Q ∪ {∞}. The topograph is an infinite tree
breaking the plane into regions corresponding to
the elements of Q̂, as in Fig. 2. In this picture,
two regions are adjacent (sharing a wall) if and
only if the corresponding elements a/b, c/d ∈ Q̂
are unimodular, i.e. ad − bc = ±1. The recurrence
relation above relates the values of f on the four
regions surrounding any one wall (u and v on ei-
ther side, and u±v at either end). In Conway’s tree,
given two regions that share a boundary edge (are
“tangent”), there are exactly two ways to choose
a third so that all three are mutually “tangent”.
Three such “mutually tangent” elements of Q̂ are
called a superbasis. The values of an integral binary
quadratic form on a superbasis determine all the
values through the recursion of the parallelogram
law.

These two questions — values of a quadratic
form and curvatures in a packing — can be
unified with a little hyperbolic geometry. Let
us consider H , the upper half plane. This is a
model of H2, the hyperbolic plane, in which the
geodesics run along Euclidean circles orthogonal
to its boundary, R̂ := R ∪ {∞}. The hyperbolic

isometries are obtained by extending the action of
PSL2 (Z) on the boundary. The action of PSL2 (Z)
on H has a fundamental region as delineated by
geodesics in Fig. 3. Also shown in that figure is
Conway’s topograph, now reincarnated as a sub-
set of the walls between images of this region: to
find it, choose the walls of finite length, i.e. those
not approaching the boundary R̂. The regions of
the topograph now correspond to the cusps in
the picture: one for each element of Q̂. (Each
such region has a horocircle inscribed in it, a circle
tangent to all sides. The collection of such circles
(discounting the one at ∞) is famously known as
the Ford circles.)

Also shown in Fig. 3, in green, is the orbit
of the geodesic line from 0 to ∞. The green
geodesics are in bijection with the unimodular
pairs of Q̂, by associating to each line its two
boundary points. This green structure could be
termed a Farey fractal, as it illustrates the well-
known Farey subdivision of R̂: beginning with the
two intervals created by 0 = 0/1 and ∞ = 1/0,
subdivide each interval (a/b, c/d) at its mediant
(a + c)/(b + d). Each green arc is the “top” of a
hyperbolic triangle formed by this subdivision.
This is called the upper half plane Farey diagram in
Hatcher’s rich treatment [9, Chapter 1].

Now let us move up one dimension. Consider
the upper half space S, a model of H3 sitting
above its boundary, Ĉ = C ∪ {∞}. The geodesic
planes are the hemispheres orthogonal to Ĉ. The
hyperbolic isometries of this model are exactly the
extensions of the Möbius transformations on Ĉ,
which can be expressed as PSL2 (C) � 〈c〉 where c
is complex conjugation.

The analogue of PSL2 (Z) of interest to us in
this setting is PSL2 (OK) where OK is the ring of
integers of an imaginary quadratic field. This is
a discrete subgroup of hyperbolic isometries, and
it has a fundamental domain, which is a volume
cut out by several geodesic planes.

There are many analogies to the upper half
plane. In H , the set Q̂ was the orbit of the single
cusp of the fundamental region. The number of
cusps of the fundamental region of PSL2 (OK) is
the class number of OK. What is the analogue
of the Farey fractal? We take the orbit of one
geodesic plane. Restricting to the boundary Ĉ,
this gives an orbit of circles under the collection
of Möbius transformations PSL2 (OK). A natural
choice is R̂ = R ∪ {∞}: then we obtain a Schmidt
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Fig. 3. A portion of the upper half plane H . In shaded grey, the usual fundamental region for the action of SL2 (Z). In black and red,
the boundaries subdividing H into images of this fundamental region. In red, Conway’s topograph. In green, the orbit of the geodesic
line from 0 to ∞ (which also breaks up H into fundamental triangles).

Fig. 4. The Schmidt arrangement of the Gaussian integers. The
box between 0 and 1 + i is shown, including only circles with
curvatures at most 20. The Schmidt arrangement is periodic
under translation by Z[i]. The Apollonian strip packing (which is
bounded by two horizontal lines through 0 and i) is highlighted
in black.

arrangement [17, 18], named for Asmus Schmidt’s
study of complex continued fractions [14]. The
Gaussian case, OK = Z[i], is shown in Fig. 4.

The circles of the Gaussian Schmidt arrange-
ment are pairwise either disjoint or mutually
tangent. They are dense in Ĉ and yet they have
a fascinating fractal structure. A circle obtained
as the image of R̂ under a transformation

(
α γ

β δ

)

has curvature i(βδ − βδ), which is always twice
a rational integer. Therefore, dilating by a factor
of two, we obtain a wild forest of tangent and
disjoint circles of integer curvature. Remarkably, it
includes every possible integral Apollonian circle
packing, up to rigid motions and scaling (see

[7, Theorem 6.1] and more generally [18, Theorem
1.3]).

In other words, there is a subgroup of
PSL2 (OK) which generates any integral Apollo-
nian circle packing. The orbit of this subgroup
is shown in Fig. 4. This subgroup is called the
Apollonian group, and it is a so-called thin group,
i.e. of infinite index in its Zariski closure.

Similar thin groups appear in other Schmidt
arrangements, giving rise to other Apollonian-
like packings with integrality properties [18].
The Schmidt arrangements themselves reflect the
arithmetic of their respective fields; for example,
the Schmidt arrangement of K is connected if and
only if OK is Euclidean [17, Theorem 1.5] (see
Fig. 5).

Now let us return to the question of the
integers represented by forms and curvatures.
First, consider H . The unimodular pair (a/b, c/d)
has separation (distance between the elements)
1/bd. Hence the integral binary quadratic form
f (b, d) = bd is a reasonable choice for the meaning
of curvature of the pair. Given any superbasis —
geometrically, a hyperbolic triangle of the Farey
fractal — if we know its curvatures, the paral-
lelogram law determines the curvatures of the
further subdivisions — the adjacent triangles. The
recursive structure of the Farey fractal illustrates
exactly this.

Now, consider S. A circle has curvature
i(βδ − βδ). This is a Hermitian form. Knowl-
edge of the form on any Descartes quadruple
determines it, recursively, on the entire Apol-
lonian circle packing. The recursive structure
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Fig. 5. The Schmidt arrangement of Q(
√−19), which is discon-

nected. Only circles with curvature at most 30 are shown; the
two dark accumulations near the bottom are located at 0 and 1.

of the Schmidt arrangement illustrates exactly
this.

Therefore we have uncovered a rather pleasing
analogy:

H S
R̂ Ĉ

H2 H3

PSL2 (Z) PSL2 (Z[i])
unimodular pairs circles
1/separation curvature
quadratic form Hermitian form

For more on this analogy, see [16–18].
However, the difficulty in resolving the local-

global conjecture, as compared to describing the
values of a quadratic form, resides in the fact
that an Apollonian circle packing represents a
thin subgroup of PSL2 (OK). For more on this
fascinating new frontier, see [11].

A note on figures. The figures in this document
were produced using Sage Mathematics Software
[13].
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