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Problem Corner 7
Ivan Guo

Welcome to Problem Corner 7. If you solve any

of these problems, please send your solutions to

APMN@wspc.com by 1 February 2018. A book

prize will be awarded to the person with the best

submission. The solutions will be posted in a

future Problem Corner.

Problem 1 — Minimal Die

You would like to construct a six-sided die with

the following properties:

• Each face contains a distinct positive integer.

• The integers on two neighbouring faces

should differ by at least two.

What is the minimal sum of the six numbers

on the die?

Problem 2 — Random Cuts

Two points are chosen uniformly at random along

the length of a long stick. The stick is then cut at

these two points, resulting in three pieces.

What is the probability that the three lengths

can form a triangle?

Problem 3 — Fibonacci Divisibility

Define the Fibonacci sequence by F1 = F2 = 1 and

Fn+2 = Fn+1 + Fn, n ≥ 1.

1) For each positive integer k, prove that there

exists some positive integer n such that Fn

is divisible by k.

2) For all positive integers a and b, prove that

Fa is divisible by Fb if and only if a is

divisible by b.

Problem 4 — Posting Boxes

At a special post office, the cost of posting a

rectangular box is equal to the sum of its length,

width and height. Suppose that box A can fit

inside box B completely.

Prove that it is cheaper to post A than B.

Problem Corner 6.2 Solutions

Problem 1 — Magic Square

Nine positive integers are placed in a 3 × 3 array,

such that the three columns, the three rows and

the two main diagonals all have the same product.

Let x be the middle integer of the top row, and y

be the leftmost integer of the middle row.

Prove that xy is a perfect square.

Solution: For convenience, let us use the fol-

lowing table as reference.

a x c
y d e
f g h

Let the common product of each row, column

and main diagonal be P. By considering the left

column, middle column, bottom row and the

diagonal starting at top left, we must have

ayf = xdg = fgh = adh = P.

Multiplying the four products together, we have

(adfgh)2xy = P4.

Since every variable is a positive integer, it follows

immediately that xy must be a perfect square.

Problem 2 — Club Members

In a school there are n students and some number

of clubs. Each club has an odd number of mem-

bers. Furthermore, each pair of clubs has an even

number of members in common.

What is the maximum possible number of

clubs in the school?

Solution: We claim that the maximum number

of clubs is n. This value can be achieved by simply

forming n disjoint clubs, each containing a single

student. So each club has one member, while each

pair of clubs have zero members in common. This

satisfies the conditions of the problem.

It remains to show that it is not possible to

have more than n clubs. For the sake of contra-

diction, suppose at least n + 1 clubs are possible.

For each club i, let Ci be a vector of length n such

that the j-th entry of Ci is either 1 if student j is

in club i, or 0 if student j is not in club i. The

key idea is to consider C1, . . . , Cn+1 as elements of

the vector space Fn
2 , in other words, vectors whose

entries are taken in modulo 2.

According to the condition of the problem, Ci

has an odd number of 1’s, while Ci and Cj has an

even number of 1’s in common. These conditions
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can be written in terms of the following dot

products

Ci · Ci = 1, Ci · Cj = 0, i � j.

Since we have n+1 vectors in an n-dimensional

vector space, they must be linearly dependent. In

other words, there exists a linear combination

n+1∑
i=1

aiCi = 0

such that not all of the ai’s are zeros. However,

by taking the dot product of the equation and Ck,

we see that, for each k,

0 = 0 · Ck =

n+1∑
i=1

aiCi · Ck

= ak(1) +
∑
i�k

ai(0) = ak.

This contradicts the linear dependence property.

Therefore the maximum number of clubs is n.

Problem 3 — Polynomial Equation

Find all polynomials p(x) with real coefficients

such that

p(x)p(x+ 1) = p(x2)

is satisfied for all real numbers x.

Solution: We first deal with the case of the

constant polynomial p(x) = c. Immediately we

have c2
= c, which implies that c = 0 or 1.

In the case of a non-constant polynomial, by

the fundamental theorem of algebra, there exists

at least one complex root. Let z ∈ C be any root

of p. Substituting x = z, we have

0 = p(z)p(z + 1) = p(z2).

Hence z2 is also a root of p. Applying this it-

eratively, we see that every member of the set

{z2n
, n ≥ 0} is a root of p. If |z| > 1, the elements

of {z2n
, n ≥ 0} are all distinct since their moduli

are strictly increasing. This is a contradiction since

p can only have finitely many roots. A similar

contradiction is reached for 0 < |z| < 1. Thus every

root z of p must satisfy |z| = 0 or 1.

Next, let us substitute x = z − 1 into the

condition, we have

0 = p(z − 1)p(z) = p((z − 1)2).

Hence (z−1)2 is also a root, which implies that |z−

1| = 0 or 1. Recall that we have already established

|z| = 0 or 1. As shown by the following diagram,

these two conditions imply that all roots of p must

belong to the set S = {0, 1, eiπ/3, e−iπ/3}.

But recall that z2 is also a root, this quickly

eliminates eiπ/3 and e−iπ/3 since their squares do

not belong to S. So the only possible roots are 0

and 1. Hence the polynomial must be of the form

p(x) = cxa(x − 1)b, c � 0.

Substituting this back into the condition, we

have

c2xa+b(x − 1)b(x + 1)a
= cx2a(x2 − 1)b.

By comparing the leading term, we see that c = 1.

Further cancellation yields

xb(x + 1)a−b
= xa, =⇒

(
x + 1

x

)a−b

= 1.

Since this holds for all x � 0, we must have a = b.

Therefore the possible polynomials are

p(x) = 0, p(x) = 1 and p(x) = xa(x − 1)a, a ≥ 1.

It is straightforward to verify that all of them are

indeed solutions.
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