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Shrikhande, “Euler’s Spoiler”,  
Turns 100

Nithyanand Rao

Relatives, well-wishers and dignitaries kept 
arriving to greet Professor Shrikhande. Seated 
on the lawns, he would adjust his hearing aid—

trying to hear over the firecrackers in the background—
thank them and smile, and now and then burst into a 
hearty chuckle, trying not to look in the direction of 
the intense light drenching the table.

Sharadchandra Shankar Shrikhande, celebrating his 
100th birthday on 19 October 2017, wasn’t too keen to 
remain in the spotlight. The bright light on the pole 
was turned away, but visitors kept coming to greet him 
and seek his blessings, some aware of his great 
mathematical achievements—in particular, the one that 

ensured his name would be associated with Euler, one 
of the greatest mathematicians in history. It was 58 years 
ago that Shrikhande, along with his mentor R.C. Bose 
and their collaborator E.T. Parker, proved Euler wrong 
and made the headlines.

Late in his life, the legendary Swiss mathematician 
Leonhard Euler (1707–1783) began a long paper [1] 
pondering a puzzle he couldn’t find an answer to. 
Although he was almost completely blind by then, his 
already prodigious productivity had increased, 
distractions having been reduced. He had always made 
the most of his phenomenal memory and ability to

Portrait by Mohan R (Courtesy of  The Shrikhande Family)



December 2018, Volume 8 No 116

Asia Pacific Mathematics Newsletter

calculate in his head and, after his loss of vision, he used 
a scribe to record his discoveries. The puzzle he was 
considering was this: Imagine that there are 36 officers 
belonging to six different military regiments, each 
regiment having six officers of different ranks. How 
does one arrange them in the form of a square such 
that each row and column has six officers, and no rank 
or regiment appears more than once in a row or 
column?

How does one satisfy both the requirements—
neither rank nor regiment repeated in a row or column? 
If we combine, or superpose, the two squares, we get 
another square as below, where the numbers are now 
coloured.

In the square above, both requirements are satisfied. 
And there is only one red 1 and only one green 2; only 
once does each such combination of rank and regiment 
appear in the square. Two such superposed Latin 
squares, therefore, are called orthogonal to each other.

Orthogonal Latin squares were, in fact, around 
much longer before Euler. Amulets bearing Latin 
squares were known in medieval Islam, circa 1200 [2]. 
Choi Seok-Jeong (1646–1715), a Korean government 
official and mathematician, used orthogonal Latin 
squares of order 9 to construct magic squares—one in 
which the entries in any of the rows or columns or 
diagonals add up to the same number. (Euler himself 
was interested in magic squares.)

The pair of Latin squares in the above example is of 
order n = 3. Euler observed that a similar exercise can 
be done for orders 4 and 5, and also whenever n is an 
odd number or is divisible by four. Now, the 36 officers 
problem, in the language of Latin squares, is to find a 
pair of orthogonal Latin squares of order 6. But Euler 
found himself unable to do it for n = 6. He couldn’t find 
an arrangement to solve the puzzle, and concluded that 
one didn’t exist at all (although his proof wasn’t fully 
correct). He went on to conjecture that no solutions 
existed for a number that, like six, left a remainder of 
two when divided by four. These are numbers such as 
10,14,18, 22, and so on, which are called “oddly even” 
numbers. (There are no orthogonal Latin squares of 
order 2 as well.)

Euler (Emanuel Handmann via Wikimedia Commons)

Mathematicians, professional or otherwise, like to 
ponder such puzzles for recreation, and not a few 
mathematical gems have emerged from such playing 
around. In many such puzzles, a simplification helps 
clarify the picture. Consider nine officers instead of 36, 
belonging to three different regiments, each regiment 
having one officer of each of the three ranks. The 
problem, as before, is to arrange them in a square such 
that no rank or regiment is repeated in a row or column. 
This is actually two problems in one. One can arrange 
the nine officers such that no regiment—labelled 1, 2 
or 3 below—is repeated in a row or column. Such an 
arrangement is called a Latin square (since Euler 
originally used Latin letters instead of numbers).

One can also arrange the officers such that no 
rank—red, green or blue below—is repeated in a row 
or column to get another Latin square.
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This conjecture by Euler was made in 1782. In 1901, 
a French mathematician named Gaston Tarry (1843–
1913) proved that n = 6 was indeed impossible by 
laboriously checking all possible cases. But Euler’s 
conjecture that orthogonality was impossible for all 
oddly even numbers remained to be resolved. Until 
1959, when R.C. Bose, Shrikhande and E.T. Parker 
disproved the conjecture.

“The suddenness with which complete success 
came,” Bose recalled later [3], “in a problem which had 
baffled mathematicians for over one and three-quarters 
centuries startled the authors as much as anyone else. 
What makes this even more surprising is that the 
concepts employed were not even close to the frontiers 
of deep modern mathematics.”

The result was announced in the annual meeting of 
the American Mathematical Society held in New York 
in April 1959. “Bose, Ernie (Parker) and I,” Shrikhande 
said later [4], “had the rare privilege of seeing our works 
reported on the front page of the Sunday Edition of the 
New York Times of April 26, 1959.”

The three of them, noted the NYT report [5], “are 
now known among their colleagues as ‘Euler’s spoilers’”.

Shrikhande and Bose were, at the time, at the 
University of North Carolina, Chapel Hill, in the 

Department of Mathematical Statistics, which had been 
founded in 1946 by the statistician Harold Hotelling 
(1895–1973). Bose had been a faculty there since 1949, 
and Shrikhande, who had joined for a PhD in 1947, 
had been Bose’s first PhD student. But his path hadn’t 
been straightforward. Born on 19 October 1917, the 
fifth of ten siblings, in Sagar, now in Madhya Pradesh, 
his family faced severe financial difficulties. Despite 
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that, Shrikhande’s father, who worked at a flour mill, 
was determined to educate his children. Shrikhande 
did well academically and won scholarships that helped 
him complete his BSc Honours at the Government 
College of Science (now known as the Institute of 
Science) in Nagpur with a first rank and a gold medal.

“At this point of time,” he wrote in an autobiographical 
essay [6], “I was badly in need of a gainful employment, 
which however was not available.” Unable to find a job, 
he instead made his way, in January 1940, to Kolkata 
where financial assistance was available for him to join 
the Indian Statistical Institute (ISI). Founded by P.C. 
Mahalanobis (1893–1972), ISI at that time “was located 
in four of five rooms in the Presidency College” where 
Mahalanobis was a professor of physics. But those 
rooms housed a hotbed of young talent in statistics 
many of whom would go on to make major contributions. 
One of them was Raj Chandra Bose (1901–1987), 
whom Shrikhande describes as “the major architect  
of my research involvement in combinatorics”, the field 
of mathematics that studies how to combine different 
things, whether certain combinations are possible at 
all, and what combination is most appropriate given 
certain constraints.

After a year at ISI, Shrikhande had a short-lived 
appointment at the college in Jabalpur where he had 
done his intermediate studies (the equivalent of two 
years after Class 10 today) and then joined as a lecturer 
in mathematics at the Government College of Science 
in Nagpur. But he kept making trips to Calcutta in the 
early 1940s to work with Bose, who introduced him to 
the theory of statistical design of experiments, a field 
where Latin squares proved to be more than amusement. 
In the 1920s, R.A. Fisher (1890–1962), the pioneering 
British statistician and biologist, had applied them to 
the design of field experiments in agriculture. His ideas 
were later developed by Bose.

Suppose one wishes to test the effects of three 
different agricultural fertilizers on the growth of a crop. 
Now, it is likely that the fertility of soil in different 
patches of a large plot of land varies naturally, perhaps 
because the amount of moisture in the soil varies. How 
does one test how good the fertilizers are while 
accounting for this natural variation in fertility of the 
soil? Fisher’s solution to this problem was to divide the 
field into cells of a three-by-three square and apply the 
three fertilizers in the pattern of a Latin square of order 
3 (such as the one shown previously). Because of this 
pattern, one can use statistical analysis to eliminate the 
bias due to variation in natural soil fertility along a row 
or column of the field.
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Now, if instead of one variety of crop, what if we 
had three? The solution to accommodate this variable 
is to use a Latin square of order 3 orthogonal to the 
earlier one. The first Latin square tells us where the 
three different fertilizers are to be applied and the 
second Latin square tells us where the three different 
varieties of the crop are to be planted. The orthogonal 
Latin square obtained by combining them would show 
the combination of crop and fertilizer to be applied in 
each cell.

Bose showed that a complete 
set of mutually orthogonal 
Latin squares is essentially 
the same as a finite projective 
plane

In fact, one can accommodate more variables by 
superposing additional orthogonal Latin squares. This 
is useful in the design of experiments wherever there 
are many variables involved, such as in medical research 
where one may need to test a medical treatment for its 
efficacy on patients of different age, weight, stages of a 
disease and so on, while needing to eliminate any effects 
due to such unavoidable variations. For a given order 
n, however, there can be a maximum of n − 1 mutually 
orthogonal Latin squares—“mutual” because any pair 
of them will be orthogonal. But it’s not necessary that 
the entire set of n −1 mutually orthogonal Latin squares 
exist. If they do exist, they are said to form a complete 
set of mutually orthogonal Latin squares. Such a 
complete set can be constructed if n is a prime 
number—divisible only by one and itself, such as 3, 5, 
7, 11 and so on—or a power of a prime number. In 
1938, Bose showed [7] how to construct a complete set 

of mutually orthogonal Latin squares in such a case, a 
result that, unknown to him, had been discovered 
earlier in 1896 by E.H. Moore (1862–1932), and 
independently by W.L. Stevens in 1939 [2]. In this work, 
he was influenced by F.W. Levi, a German Jewish 
mathematician who, having fled the Nazis, became the 
head of the Department of Mathematics at the 
University of Calcutta. (Levi had shown that an 
attempted proof of Euler’s conjecture by H.F. MacNeish, 
an American mathematician, was wrong. Others had 
made unsuccessful attempts earlier as well.) Bose also 
showed that a complete set of mutually orthogonal 
Latin squares is essentially the same as a finite projective 
plane, a concept from geometry.

Bose’s  arr ival  at  North 
Carolina “proved a turning 
point in my academic career,” 
wrote Shrikhande

For mathematicians, there are few things more 
beautiful than such surprising connections between 
disparate areas of mathematics. What’s more, projective 
geometry too, like Euler’s conjecture, had what would 
seem an unlikely provenance—Renaissance artists. 
They were interested in perspective, in representing 
three-dimensional objects and scenes on the 

R.C. Bose  
(Mac Tutor History of Mathematics Archive,  

University of St Andrews) (Courtesy of  The Shrikhande Family)



December 2018, Volume 8 No 1 19

Asia Pacific Mathematics Newsletter

two-dimensional surfaces of their paintings. To draw, 
for example, square-shaped tiles on a floor, they would 
not paint them all to have the same size with their sides 
parallel to each other—this would look like a view from 
above. Instead, two of the opposing sides of a tile would 
be drawn as if they were approaching each other, with 
the tiles further away drawn smaller.

This effect can be readily seen from an image of 
railway tracks—the parallel tracks, as they recede, 
appear to meet at the horizon. Projective geometry 
takes this idea seriously and imagines a point at 
“infinity” where a family of parallel lines “meet”. Or to 
put it differently, a point at infinity can be thought of 
as a point which lies on each member of a family of 
parallel lines. This trick ensures that any two lines on 
a plane, parallel or not, will meet. Different families of 
parallel lines meet at different points at infinity, and 
these points would make up a line at infinity. Such a 
line at infinity, along with an ordinary (finite) plane, 
makes up a finite projective plane. (Mathematically, a 
finite projective plane has the property that lines and 
points in it are dual to each other—one can exchange 
their roles, and the plane and its properties would still 
remain the same. Any two lines, for example, intersect 
at only one point, and any two points lie on only one 
line.)

If there exists a finite projective plane of order n, 
which is a prime or a prime power, Bose showed, that 
a complete set of mutually orthogonal Latin squares 
exists for order n. Whether this condition is necessary—
that is, is there an n which is not a prime or a prime 
power for which one can find a complete set of mutually 
orthogonal Latin squares—is unknown. (This is 
equivalent to the question of whether a projective plane 
of non-prime power order exists.) We do know [2] that 
there exists no complete set of mutually orthogonal 
Latin squares for order 10, but since 10 is not a prime 
or a prime power, the problem remains open.

Bose had become famous for his work on block 
designs by the time he left Calcutta for North Carolina. 
Shrikhande was already there, having been selected, in 
1947, for a government scholarship programme that 
sent Indians abroad for higher studies. He was later 
joined by his wife, Shakuntala, whose heart he had won 
over a game of badminton in Nagpur, and their 
children. Bose too arrived, but then left, only to return 
as permanent faculty in 1949. “His arrival there proved 
a turning point in my academic career,” wrote 
Shrikhande [6]. “Under his inspiring guidance I was 
fortunate to complete my [PhD] thesis in about a year.” 
Shrikhande found time to interact with and help his 

fellow students too. Another student of Bose at the time, 
K.A. Bush, recalls that a particular affinity developed 
between him and Shrikhande. “I turned to him for 
support,” wrote Bush in an essay commemorating 
Shrikhande’s work [8], “because I instinctively 
recognized his compassionate nature almost from our 
first meeting.” (There were other Indians too in the 
Department who would go on to make a name for 
themselves. R.R. Bahadur (1924–1997) and Gopinath 
Kallianpur (1925–2015), who would later become 
Director of ISI, were also students. S.N. Roy (1906– 
1964) joined later as faculty.)

Shrikhande returned to India in 1953, to his 
position at Nagpur, till 1958 when he resigned and 
accepted a visiting position at Chapel Hill. “My two 
years stay there till 1960 was the most productive period 
of my research career,” he would write later [6].

Mathematicians, when unable to make progress 
on a particular problem, sometimes find it useful 

to consider related problems. For Euler’s conjecture, 
the first chink appeared via a related conjecture. H F 
MacNeish gave a lower bound [9] to the number of 
mutually orthogonal Latin squares of any order n: it 
would be one less than the smallest prime number that 
appears when n is written out as a product of its prime 
number factors (called its prime power decomposition). 
Any number can be written as the product of prime 
numbers. The number 22, for example, is 2×11, both 
prime numbers. For 22, MacNeish guaranteed, the 
minimum number of mutually orthogonal Latin 
squares was one, meaning that there’s at least one Latin 
square of this order. He then conjectured that this lower 
bound is the same as the upper bound. Thus, if 
MacNeish’s conjecture (later worked on by H.B. Mann) 
was true, then the maximum number of mutually 
orthogonal Latin squares of order 22 (which leaves 
remainder two when divided by four), would have been 
one—there would be only one Latin square of that 
order, implying that Euler’s conjecture would be true. 
Proving MacNeish’s conjecture would mean proving 
Euler’s conjecture, but disproving MacNeish’s conjecture 
does not necessarily disprove Euler’s conjecture.

Parker, nevertheless, saw an opening. He was, at the 
time, working at Remington Rand Univac, an early 
computer company. His work on this problem, his sister 
Edythe Parker Woodruff later wrote, “was done entirely 
outside of company work; it was his recreation. He did 
it out of his pure love for the subject.” [10]. Parker found 
[11] four mutually orthogonal Latin squares of order
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21 (we now know there are five [2]), whereas there 
should have been only two according to MacNeish’s 
conjecture.

He had used a method used to design statistical 
experiments called balanced incomplete block designs, 
which Bose had contributed greatly to. Suppose, in the 
earlier example of the testing of different fertilizers on 
a crop, we divide a plot into three columns because we 
have reason to believe that the soil fertility is constant 
in a given column but varies between columns. How 
does one then test the effect of three different fertilizers 
on a given crop, eliminating the natural fertility 
variation between columns? One could divide each 
column into two and use two fertilizers in each column. 
For  example,  one could have the fol lowing 
arrangement—the first column has fertilizer 2 and 3 
applied, the second column has fertilizer 1 and 3 
applied, and the third column has fertilizer 1 and 2 
applied. This is a balanced incomplete block design— 
it’s “balanced” because each pair of fertilizers has the 
same probability of occurring in this scheme, and 
“incomplete” because in no column do we have all three 
fertilizers used. Today, Latin squares and balanced 
incomplete block designs have found applications as 
varied as in communication systems, cryptography, 
error-control coding, and clinical trials of medicines.

Parker believed his disproof of MacNeish’s conjecture 
to be “an unimportant near miss” [5]. But “Parker’s 
result”, as a later paper he wrote with Bose and 
Shrikhande noted, “though it did not disprove Euler’s 
conjecture threw serious doubts on its correctness.” 
[12]. Building on this, Bose and Shrikhande constructed 
orthogonal Latin squares of order 22 [13], [14]. They 
used a generalisation of balanced incomplete block 
designs called pairwise balanced designs.

Parker became aware of this work, and he came up 
with two orthogonal Latin squares of order 10 through 
a different method [15]. There ensued “feverish 
correspondence” [16] between the three mathematicians, 
culminating in their proof that there did indeed exist 
orthogonal Latin squares of all orders other than six 
(and two). Euler was wrong.

Their proof had bridged geometry, combinatorics 
and statistics. “It is a striking example of the unity of 
science,” said Bose of this famous result [3], “that the 
initial impulse which lead to a solution of the problem 
propounded by Euler, came from the practical needs 
of agricultural experimentation, thus reversing the 
more usual passage from basic to applied knowledge.”

Later in his life, in an autobiographical essay [17], 
Bose recalled what had happened the day after the result 
was announced at the AMS meeting. “The science 

Shrikhande and Bose at work (Courtesy of  The Shrikhande Family)
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editor of the New York Times came to interview us,” he 
wrote, “and next morning our picture appeared on the 
first page of the Sunday edition of the New York Times 
with a description of our work. I was staying at a small 
hotel. Next morning when I went to pay the bill, the 
cashier looked at me and asked, ‘Is it your picture in 
the New York Times?’ ‘Yes, it is my picture,’ I said. He 
replied, ‘You must have done something. The front page 
of the New York Times cannot be bought for a million 
dollars.’”

Shrikhande’s second son, Mohan, was in school 
when his teacher stopped him on the stairs and asked 
him if he had seen that day’s New York Times. In the 
news report, recalled the late Dutch combinatorist J J 
Seidel (1919–2001) in an address on Shrikhande’s 70th 
birthday in 1987 [4], “The three scientists stood in front 
of, and partly made invisible a huge 10 × 10 tableau 
showing the Latin square that spoiled Euler’s conjecture. 
The next day, dozens of school-boys had computed the 
missing pieces.”

As his  chi ldren—Mohan,  Asha and Ani l , 
grandchildren, and great-grandchildren took 

to the stage to speak lovingly of how deeply he had 
influenced them, and how grateful they were for his 
presence and openness, Shrikhande’s life flashed by on 
the screen behind. Shrikhande the young man travelling 
to distant shores, the loving husband and father, the 
family man who remained close to his siblings, the 
mathematician and mentor, the yoga practitioner, and 
the doting grandfather and great-grandfather. From 
Nagpur there also arrived a message from his academic 
descendants, expressing their gratitude to him for 
having started and sustained research in statistics and 
combinatorics in that city by founding the Department 
of Statistics at the Institute of Science in Nagpur in 1955. 
All these facets of “Gramps”, as his grandchildren call 
him, were not orthogonal to each other but blended  
harmoniously.

After his famous work, Shrikhande returned to 
India in 1960, joining Banaras Hindu University, which 
he left in 1963 to join the University of Bombay where 
he was the first head of the Department of Mathematics 
and the Director of the UGC Centre for Advanced 
Study in Mathematics. Navin Singhi, who did his PhD 
with Shrikhande at the University of Bombay in 
1972–73 and went on to collaborate with him and Bose, 
remembers Shrikhande’s simplicity and unassuming 
style, and also his focussed approach to his work. As 
head of the Department, he had to do a lot of 

administrative work, his office often a continuous 
stream of visitors. But Shrikhande would always 
nonchalantly return to his work as soon as he had 
cleared off such frequent interruptions.

“All his work had the hallmark 
of being simple and elegant, 
yet deep”

His students remember his endearing personality 
and habits. “He used empty envelopes left over from 
incoming mails for writing research papers. He almost 
never used normal paper or notebook to write down,” 
Singhi recalls. “As a chairman, he used to get a lot of 
mail. He had developed his own techniques on how to 
open an envelope of incoming mail carefully so that its 
inside could be used to write mathematics. These covers 
which most people throw away were the ones which 
carried most of Shrikhande’s research work, with me 
and with others.”

The late Vasanti Bhat-Nayak, who did her PhD with 
Shrikhande at the University of Bombay, had joined 
the Department as a lecturer after an unhappy spell at 
the Tata Institute of Fundamental Research. She felt 
welcomed by the cordial environment Shrikhande had 
nurtured and his gentle encouragement that restored 
her shattered confidence. “Shrikhande would always 
introduce me to others as his colleague and not as his 
student,” she wrote in a commemorative essay. “I was 
never ridiculed even if I made a mathematically wrong 
statement.” She later became head of the Department 
herself.

Shrikhande made many other notable contributions 
to combinatorics and design theory. In particular, while 
investigating Latin squares, he published another 
landmark paper [18] in the same year, 1959, on what 
has come to be known as the Shrikhande graph, which 
has connections to algebra, group theory and topology. 
“All his work,” said Sharad Sane, a combinatorist at IIT 
Bombay, “had the hallmark of being simple and elegant, 
yet deep.” This echoes the words of the late statistician 
J.N. Srivastava (1933–2010) who, like Shrikhande, did 
his PhD with Bose, and wrote that [8], “In any given 
combinatorial setting, Professor Shrikhande has the 
knack of discovering questions which are deep, elegant 
and significant. This gives a fundamental character to 
all his work...”

Mohan Shrikhande, a renowned combinatorist 
himself, and who retired from the Central Michigan 
University in 2015, did not begin his career as a 
combinatorist, having done his PhD in a different area. 
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“I wasn’t particularly interested in combinatorics 
until after my PhD,” he said, “which was when I read a 
paper my father sent me.” He went on to co-author 
papers with some of his father’s colleagues and students, 
including Bose, Singhi and Sane.

Sane, and S.B. Rao—former director of both the 
Indian Statistical Institute, Kolkata, and the C.R. Rao 
Advanced Institute of Mathematics, Statistics and 
Computer Science, Hyderabad—had both worked with 
Shrikhande at the University of Bombay, and, at the 
birthday party, spoke of the deep influence his work 
has had on combinatorics and design theory, and the 
many mathematicians he had mentored, in India and 
abroad.

Shrikhande lived with his children and grandchildren 
in the US. He returned to India in 2009, and now lives 
in Vijayawada, in the care of the in-laws of Nita 
Kulkarni, one of his grandchildren, in the ashram they 
run for underprivileged girls. On his birthday, which 
also happened to be Deepavali, the festival of lights, the 
girls sang songs, drew a rangoli in the form of a 
Shrikhande graph, and prepared a special cake for him.

Shrikhande’s fellow Euler’s spoilers, Bose and Parker, 
have passed away in 1987 and 1991 respectively, but 
their work has had an enduring impact. “The techniques 
they developed,” said Sane, “have now become an 
important part of the study of design theory and 
combinatorics.”

Shrikhande hasn’t stopped learning, however. When 
living with his family in the US for example, he 
enthusiastically learnt how to use email, said his grand-
daughter Nita. These days, he still enjoys trying to fill 
in numbers in a square—in the form of Sudoku puzzles, 
which is just a special kind of Latin square.

“Yeah, I’m trying. But it’s getting very difficult,” he 
said, laughing.
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